

Hughes Information Technology Corporation
Upper Marlboro, MD

305-CD-042-001

EOSDIS Core System Project

Flight Operations Segment (FOS)
Command Management Design

Specification for the ECS Project

October 1995

305-CD-042-001

Hughes Information Technology Corporation

Upper Marlboro, Maryland

Flight Operation Segment (FOS)
Command Management Design Specification

for the ECS Project

October 1995

Prepared Under Contract NAS5-60000
CDRL Item #046

APPROVED BY

Cal E. Moore, Jr. /s/ 9/29/95
Cal Moore, FOS CCB ChairmanDate
EOSDIS Core System Project

305-CD-042-001

This page intentionally left blank.

iii 305-CD-042-001

Preface

This document, one of nineteen, comprises the detailed design specification of the FOS subsystems
for Releases A and B of the ECS project. This includes the FOS design to support the AM-1 launch.

The FOS subsystem design specification documents for Releases A and B of the ECS project
include:

305-CD-040 FOS Design Specification (Segment Level Design)

305-CD-041 Planning and Scheduling Design Specification

305-CD-042 Command Management Design Specification

305-CD-043 Resource Management Design Specification

305-CD-044 Telemetry Design Specification

305-CD-045 Command Design Specification

305-CD-046 Real-Time Contact Management Design Specification

305-CD-047 Analysis Design Specification

305-CD-048 User Interface Design Specification

305-CD-049 Data Management Design Specification

305-CD-050 Planning and Scheduling Program Design Language (PDL)

305-CD-051 Command Management PDL

305-CD-052 Resource Management PDL

305-CD-053 Telemetry PDL

305-CD-054 Real-Time Contact Management PDL

305-CD-055 Analysis PDL

305-CD-056 User Interface PDL

305-CD-057 Data Management PDL

305-CD-058 Command PDL

Object models presented in this document have been exported directly from CASE tools and in
some cases contain too much detail to be easily readable within hard copy page constraints. The
reader is encouraged to view these drawings on line using the Portable Document Format (PDF)
electronic copy available via the ECS Data Handling System (EDHS) at URL http://
edhs1.gsfc.nasa.gov.

iv 305-CD-042-001

This document is a contract deliverable with an approval code 2. As such, it does not require formal
Government approval, however, the Government reserves the right to request changes within 45
days of the initial submittal. Once approved, contractor changes to this document are handled in
accordance with Class I and Class II change control requirements described in the EOS
Configuration Management Plan, and changes to this document shall be made by document change
notice (DCN) or by complete revision.

Any questions should be addressed to:

Data Management Office
The ECS Project Office
Hughes Information Technology Corporation
1616 McCormick Drive
Upper Marlboro, Maryland 20774-5372

v 305-CD-042-001

Abstract

The FOS Design Specification consists of a set of 19 documents that define the FOS detailed
design. The first document, the FOS Segment Level Design, provides an overview of the FOS
segment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems. It also allocates the level 4 FOS requirements to the subsystem
design.

Keywords: FOS, design, specification, analysis, IST, EOC

vi 305-CD-042-001

This page intentionally left blank.

vii 305-CD-042-001

Change Information Page

List of Effective Pages

Page Number Issue

Title Original

iii through xii Original

1 -1 and 1-2 Original

2-1 through 2-4 Original

3-1 through 3-230 Original

AB-1 through AB-8 Original

GL-1 through GL-8 Original

Document History

Document Number Status/Issue Publication Date CCR Number

305-CD-042-001 Original October 1995 95-0671

viii 305-CD-042-001

This page intentionally left blank.

ix 305-CD-042-001

Contents

Preface

Abstract

1. Introduction

1.1 Identification ... 1-1
1.2 Scope ... 1-1
1.3 Purpose .. 1-1
1.4 Status and Schedule .. 1-1
1.5 Document Organization .. 1-1

2. Related Documentation

2.1 Parent Document ... 2-1
2.2 Applicable Documents .. 2-1
2.3 Information Documents .. 2-2

2.3.1 Information Document Referenced ... 2-2

3. Command Management 3-1

3.1 Command Management Context .. 3-1
3.2 CMS Schedule Controller ... 3-4

3.2.1 CMS Schedule Controller Context ... 3-4
3.2.2 CMS Schedule Controller Interfaces .. 3-6
3.2.3 CMS Schedule Controller Object Model .. 3-9
3.2.4 CMS Schedule Controller Dynamic Model ... 3-18
3.2.5 CMS Schedule Controller Data Dictionary ... 3-36

3.3 Ground Schedule .. 3-53
3.3.1 Ground Schedule Context .. 3-53
3.3.2 Ground Schedule Interfaces ... 3-56
3.3.3 Ground Schedule Object Model ... 3-57
3.3.4 Ground Schedule Dynamic Model ... 3-57
3.3.5 Ground Schedule Data Dictionary ... 3-70

x 305-CD-042-001

3.4 Command Model ... 3-78
3.4.1 Command Model Context .. 3-78
3.4.2 Command Model Interfaces ... 3-80
3.4.3 Command Model Object Model .. 3-81
3.4.4 Command Model Dynamic Model .. 3-91
3.4.5 Command Model Data Dictionary ...3-101

3.5 Spacecraft Model ...3-121
3.5.1 Spacecraft Model Context ..3-121
3.5.2 Spacecraft Model Interfaces ...3-124
3.5.3 Spacecraft Model Object Model ..3-127
3.5.4 Spacecraft Model Dynamic Model ...3-136
3.5.5 Spacecraft Model Data Dictionary ...3-160

3.6 Load Catalog ..3-181
3.6.1 Load Catalog Context ..3-181
3.6.2 Load Catalog Interfaces ...3-184
3.6.3 Load Catalog Object Model ...3-187
3.6.4 Load Catalog Dynamic Model ...3-191
3.6.5 Load Catalog Data Dictionary ...3-212

Figures

3.1-1. CMS Context Diagram ... 3-2
3.2-1. Schedule Controller Context Diagram .. 3-5
3.2-2. Schedule Controller Object Model - Page 1 .. 3-10
3.2-3. Schedule Controller Object Model - Page 2 .. 3-11
3.2-4. Schedule Controller Object Model - Page 3 .. 3-12
3.2-5. Schedule Controller Object Model - Page 4 .. 3-13
3.2-6. Schedule Controller Object Model - Page 5 .. 3-14
3.2-7. Schedule Controller Object Model - Page 6 .. 3-15
3.2-8. Schedule Controller Object Model - Page 7 .. 3-16
3.2-9. Schedule Controller Object Model - Page 8 .. 3-17
3.2-10. Schedule Controller Initialization Event Trace .. 3-19
3.2-11. Schedule Controller DAS Receipt Event Trace - No Constraint Violations 3-21
3.2-12. DAS Receipt Scenario - Soft Constraint Violation .. 3-24
3.2-13. DAS Receipt Scenario - Hard Constraint Violation .. 3-28
3.2-14. Late Change Receipt Event Trace .. 3-31
3.2-15. "What-if" Receipt Scenario - Hard Constraint Violation 3-34

xi 305-CD-042-001

3.3-1. Ground Schedule Context Diagram ... 3-54
3.3-2. Ground Schedule Object Model - page 1 ... 3-58
3.3-3. Ground Schedule Object Model - page 2 - Directives ... 3-59
3.3-4. Ground Schedule Object Model - Files ... 3-60
3.3-5. Ground Schedule Initialization Event Trace .. 3-62
3.3-6. Expanded DAS Processing Event Trace .. 3-64
3.3-7. Delete from Schedule Event Trace .. 3-66
3.3-8. Expected State Table Generation Event Trace .. 3-68
3.3-9. Ground Script Generation Event Trace .. 3-71
3.4-1. Command Model Context Diagram ... 3-79
3.4-2. Command Model Object Model (1 of 7) ... 3-82
3.4-3. Command Model Object Model (2 of 7) ... 3-83
3.4-4. Command Model Object Model (3 of 7) ... 3-84
3.4-5. Command Model Object Model (4 of 7) ... 3-85
3.4-6. Command Model Object Model (5 of 7) ... 3-86
3.4-7. Command Model Object Model (6 of 7) ... 3-87
3.4-8. Command Model Object Model (7 of 7) ... 3-88
3.4-9. Command Model Initialization Event Trace .. 3-92
3.4-10. Command Model Expanded Directive List Event Trace 3-94
3.4-11. Command Model Command Procedure Receipt Event Trace 3-95
3.4-12. Command Model Activity Definition List Receipt Event Trace 3-97
3.4-13. Command Model RTS Load Definition Receipt Event Trace 3-99
3.5-1. Spacecraft Model ontext Diagram ...3-122
3.5-2. Spacecraft Model Object Model (1 of 6) ...3-128
3.5-3. Spacecraft Model Object Model (2 of 6) ...3-129
3.5-4. Spacecraft Model Object Model (3 of 6) ..3-130
3.5-5. Spacecraft Model Object Model (4 of 6)..3-131
3.5-6. Spacecraft Model Object Model (5 of 6) ...3-132
3.5-7. Spacecraft Model Object Model (6 of 6) ...3-133
3.5-8. Spacecraft Model Initialization Event Trace ...3-137
3.5-9. Spacecraft Model ATC Load Generation Event Trace ..3-139
3.5.10. Spacecraft Model ATC Buffer Model Update Event Trace3-141
3.5-11. Spacecraft Model ATC Buffer Model Deletion Event Trace3-143
3.5-12. Spacecraft Model ATC Buffer Display Event Trace ...3-144
3.5-13. Spacecraft Model RTS Buffer Display Event Trace ..3-146
3.5-14. Spacecraft Model Map Report Event Trace ...3-148
3.5-15. Spacecraft Model Image Report Event Trace ..3-150
3.5-16. Spacecraft Model Compare Report Event Trace ...3-151
3.5-17. Spacecraft Model Table Model & Image Update Event Trace3-153

xii 305-CD-042-001

3.5-18. Spacecraft Model RTS Model & Image Update Event Trace3-155
3.5-19. Spacecraft Model Table Data Request Event Trace ..3-157
3.5-20. Spacecraft Model Ground Image Overwrite Event Trace3-158
3.6-1. Load Catalog Context Diagram ...3-182
3.6-2. Load Catalog External Interfaces ..3-186
3.6-3. Load Generation Requests ...3-188
3.6-4. Load Types ..3-189
3.6-5. Load Components ..3-190
3.6-6. Load Component File Classes ...3-192
3.6-7. Load Catalog Internal Interfaces ...3-193
3.6-8. Load Catalog Initialization Event Trace ..3-195
3.6-9. Table Load Generation Event Trace ..3-197
3.6-10. Table Load Generation from FDF Load Contents Event Trace3-199
3.6-11. Table Load Generation for Clock Correlation Event Trace3-201
3.6-12. RTS Load Generation Event Trace ...3-203
3.6-13. Microprocessor Load Generation Event Trace ..3-205
3.6-14. Flight Software Load Generation Event Trace ..3-207
3.6-15. ATC Load Generation Event Trace ...3-209
3.6-16. Uplink Notification Receipt Event Trace ..3-211

Tables

3.2.2. CMS Schedule Controller Interfaces..3-6
3.3.2. Ground Schedule Interfaces ..3-56
3.4.2. Command Model Interfaces ...3-80
3.5.2. Spacecraft Model Interfaces ...3-124
3.6.2. Load Catalog Interfaces ...3-184

Abbreviations and Acronyms

Glossary

1-1 305-CD-042-001

1. Introduction

1.1 Identification
The contents of this document defines the design specification for the Flight Operations Segment
(FOS). Thus, this document addresses the Data Item Description (DID) for CDRL Item 046
305/DV2 under Contract NAS5-60000.

1.2 Scope
The Flight Operations Segment (FOS) Design Specification defines the detailed design of the FOS.
It allocates the Level 4 FOS requirements to the subsystem design. It also defines the FOS
architectural design. In particular, this document addresses the Data Item Description (DID) for
CDRL # 046, the Segment Design Specification.

This document reflects the August 23, 1995 Technical Baseline maintained by the contractor
configuration control board in accordance with ECS Technical Direction No. 11, dated
December 6, 1994. It covers releases A and B for FOS. This corresponds to the design to support
the AM-1 launch.

1.3 Purpose
The FOS Design Specification consists of a set of 19 documents that define the FOS detailed
design. The first document, the FOS Segment Level Design, provides an overview of the FOS
segment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems.

1.4 Status and Schedule
This submittal of DID 305/DV2 incorporates the FOS detailed design performed during the
Critical Design Review (CDR) time frame. This document is under the ECS Project configuration
control.

1.5 Document Organization
305-CD-040 contains the overview, the FOS segment models, the FOS architecture, and FOS
analyses and trades performed during the design phase.

305-CD-041 contains the detailed design for Planning and Scheduling Design Specification.

305-CD-042 contains the detailed design for Command Management Design Specification.

305-CD-043 contains the detailed design for Resource Management Design Specification.

305-CD-044 contains the detailed design for Telemetry Design Specification.

305-CD-045 contains the detailed design for Command Design Specification.

305-CD-046 contains the detailed design for Real-Time Contact Management Design
Specification.

1-2 305-CD-042-001

305-CD-047 contains the detailed design for Analysis Design Specification.

305-CD-048 contains the detailed design for User Interface Design Specification.

305-CD-049 contains the detailed design for Data Management Design Specification.

305-CD-050 contains Planning and Scheduling PDL.

305-CD-051 contains Command Management PDL.

305-CD-052 contains Resource Management PDL.

305-CD-053 contains the Telemetry PDL.

305-CD-054 contains the Real-Time Contact Management PDL.

305-CD-055 contains the Analysis PDL.

305-CD-056 contains the User Interface PDL.

305-CD-057 contains the Data Management PDL.

305-CD-058 contains the Command PDL.

Appendix A of the first document contains the traceability between Level 4 Requirements and the
design. The traceability maps the Level 4 requirements to the objects included in the subsystem
object models.

Glossary contains the key terms that are included within this design specification.

Abbreviations and acronyms contains an alphabetized list of the definitions for abbreviations and
acronyms used within this design specification.

2-1 305-CD-042-001

2. Related Documentation

2.1 Parent Document
The parent documents are the documents from which this FOS Design Specification’s scope and
content are derived.

194-207-SE1-001 System Design Specification for the ECS Project

304-CD-001-002 Flight Operations Segment (FOS) Requirements Specification for
the ECS Project, Volume 1: General Requirements

304-CD-004-002 Flight Operations Segment (FOS) Requirements Specification for
the ECS Project, Volume 2: AM-1 Mission Specific

2.2 Applicable Documents
The following documents are referenced within this FOS Design Specification or are directly ap-
plicable, or contain policies or other directive matters that are binding upon the content of this vol-
ume.

194-219-SE1-020 Interface Requirements Document Between EOSDIS Core System
(ECS) and NASA Institutional Support Systems

209-CD-002-002 Interface Control Document Between EOSDIS Core System (ECS)
and ASTER Ground Data System, Preliminary

209-CD-003-002 Interface Control Document Between EOSDIS Core System (ECS)
and the EOS-AM Project for AM-1 Spacecraft Analysis Software,
Preliminary

209-CD-004-002 Data Format Control Document for the Earth Observing System
(EOS) AM-1 Project Data Base, Preliminary

209-CD-025-001 ICD Between ECS and AM1 Project Spacecraft Software Develop-
ment and Validation Facilities (SDVF)

311-CD-001-003 Flight Operations Segment (FOS) Database Design and Database
Schema for the ECS Project

502-ICD-JPL/GSFC Goddard Space Flight Center/MO&DSD, Interface Control Docu-
ment Between the Jet Propulsion Laboratory and the Goddard Space
Flight Center for GSFC Missions Using the Deep Space Network

530-ICD-NCCDS/MOC Goddard Space Flight Center/MO&DSD, Interface Control Docu-
ment Between the Goddard Space Flight Center Mission Operations
Centers and the Network Control Center Data System

530-ICD-NCCDS/POCC Goddard Space Flight Center/MO&DSD, Interface Control Docu-
ment Between the Goddard Space Flight Center Payload Operations
Control Centers and the Network Control Center Data System

530-DFCD-NCCDS/POCC Goddard Space Flight Center/MO&DSD, Data Format control Doc-

2-2 305-CD-042-001

ument Between the Goddard Space Flight Center Payload Opera-
tions Control Centers and the Network Control Center Data System

540-041 Interface Control Document (ICD) Between the Earth Observing
System (EOS) Communications (Ecom) and the EOS Operations
Center (EOC), Review

560-EDOS-0230.0001 Goddard Space Flight Center/MO&DSD, Earth Observing System
(EOS) Data and Operations System (EDOS) Data Format Require-
ments Document (DFRD)

ICD-106 Martin Marietta Corporation, Interface Control Document (ICD)
Data Format Control Book for EOS-AM Spacecraft

none Goddard Space Flight Center, Earth Observing System (EOS) AM-
1 Flight Dynamics Facility (FDF) / EOS Operations Center (EOC)
Interface Control Document

2.3 Information Documents

2.3.1 Information Document Referenced

The following documents are referenced herein and, amplify or clarify the information presented
in this document. These documents are not binding on the content of this FOS Design Specifica-
tion.

194-201-SE1-001 Systems Engineering Plan for the ECS Project

194-202-SE1-001 Standards and Procedures for the ECS Project

193-208-SE1-001 Methodology for Definition of External Interfaces for the ECS Project

308-CD-001-004 Software Development Plan for the ECS Project

194-501-PA1-001 Performance Assurance Implementation Plan for the ECS Project

194-502-PA1-001 Contractor's Practices & Procedures Referenced in the PAIP for the ECS
Project

604-CD-001-004 Operations Concept for the ECS Project: Part 1-- ECS Overview, 6/95

604-CD-002-001 Operations Concept for the ECS project: Part 2B -- ECS Release B, An-
notated Outline, 3/95

604-CD-003-001 ECS Operations Concept for the ECS Project: Part 2A -- ECS Release
A, Final, 7/95

194-WP-912-001 EOC/ICC Trade Study Report for the ECS Project, Working Paper

194-WP-913-003 User Environment Definition for the ECS Project, Working Paper

194-WP-920-001 An Evaluation of OASIS-CC for Use in the FOS, Working Paper

194-TP-285-001 ECS Glossary of Terms

222-TP-003-006 Release Plan Content Description

none Hughes Information Technology Company, Technical Proposal for the
EOSDIS Core System (ECS), Best and Final Offer

2-3 305-CD-042-001

560-EDOS-0211.0001 Goddard Space Flight Center, Interface Requirements Document (IRD)
Between the Earth Observing System (EOS) Data and Operations Sys-
tem (EDOS), and the EOS Ground System (EGS) Elements, Prelimi-
nary

NHB 2410.9A NASA Hand Book: Security, Logistics and Industry Relations Divi-
sion, NASA Security Office: Automated Information Security Hand-
book

2-4 305-CD-042-001

This page intentionally left blank.

3-1 305-CD-042-001

3. Command Management

The Command Management subsystem (CMS) is responsible for providing tools used to manage
the planned operations of the EOS spacecraft and their instruments. Planned operations are
managed by means of ground scripts, preplanned command procedures, and spacecraft and
instrument loads containing stored commands, data, or software. Ground scripts are created by
CMS based on the Detailed Activity Schedule (DAS) created by Planning & Scheduling subsystem
(PAS). Preplanned command procedures are created by the Procedure Builder, described in Book 9
of the FOS Design Specification, and validated by CMS.

Loads that are ready for uplink are generated by CMS from load content information. The five
types of load contents processed by CMS are: absolute time command (ATC), which are created
by CMS based on the DAS from PAS; relative time sequence (RTS), which are created either by
the FOS User Interface subsystem (FUI) or externally to the FOS and must follow a format defined
in the PDB; table, which are created either by FUI or externally to the FOS and must follow a
format defined in the PDB; microprocessor, which are created externally to the FOS; and flight
software, which are created externally to the FOS. Each type of load contents is processed
differently by CMS: ATC and RTS load contents consist of commands and time tags that are
converted to binary; table load contents consist of data fields that are converted to binary;
microprocessor and flight software load contents are already in binary form when received by
CMS. Once the load contents is in binary, CMS formats the load data for uplink by the FOS
Command subsystem.

The CMS also generates reports on load contents and current uplink status and maintains
information on the current state of spacecraft memory.

The CMS design includes five components: Schedule Controller, which is responsible for
receiving the DAS from PAS and initiating the generation of products based on the DAS; Ground
Schedule, which is responsible for maintaining a continuous schedule of commands and generating
products based on that schedule; Command Model, which is responsible for performing rule based
constraint checks; Spacecraft Model, which models spacecraft memory; and Load Catalog, which
generates and maintains loads that are available for uplink.

3.1 Command Management Context
The CMS interfaces with the other FOS subsystems and with external entities. These interfaces are
shown in Figure 3.1-1 and described below.

Planning and Scheduling Subsystem - The Planning and Scheduling subsystem (PAS) generates
an integrated, conflict-free schedule of space and ground activities for each spacecraft for each
target day. PAS sends this schedule with a request to generate ATC loads and ground scripts based
on the schedule. CMS performs command-level constraint checking and returns conflict
information to PAS. PAS allows the user to override soft constraint violations and returns a
constraint override status to CMS. Once the ATC load is built, CMS sends an uplink request for
the load to PAS.

3-2
305-C

D
-042-001

CSMS Management
Subsystem

FOS User
Interace

FOS Data
Management

FOS Planning
& Scheduling

FOS Command
Management

FOS
Telemetry

This System

Status

Memory Dump, Command DB,
Activity DB, Table DB,

Constraint DB, Laod Uplink
Notification, Initiaization

Files.

Loads, Load Catalog Entry,
Reports, Ground Script,

Events, Check Point Files.

Load Generation Request,
Detailed Activity Schedule,
Constraint Override Status,

Orbital Events

Load Generation Requests, Preplanned Command
Procedure Validation Request, RTS Load Validation Request,

Constraint Override Status, Ground Script Generation Request,
Compare Request, Report Request, Display Data Request

Request Override Status,
Conflict Info, Display Data

Expected State
Table

Conflict Information,
Uplink Request, Load

Delete Notification

Expected State
Table Request

Figure 3.1-1. CMS Context Diagram

3-3 305-CD-042-001

The schedule that PAS sends to CMS includes the orbital events that were used in generating the
schedule. CMS includes these orbital events in the Integrated Report and in the ground script as
comments.

CMS is also responsible for notifying PAS if a load that has been scheduled for uplink has been
deleted from the load catalog.

User Interface Subsystem - The FOT requests generation of RTS, table, microprocessor, and
flight software loads from load contents files via the FOS User Interface Subsystem (FUI). CMS
generates the load and returns a status to FUI.

FUI also sends requests for ground script generation to CMS. CMS generates a ground script and
returns a request status to FUI. CMS also provides ground script information for a report on
request.

FUI sends command procedures and RTS load contents to CMS for validation. The CMS performs
a constraint check of the command procedure or RTS and returns the results. FUI allows the user
to override soft constraint violations and, for RTS loads, forwards the override status to CMS.

FUI sends requests for generation of a memory image from collected dump telemetry to CMS.
These requests may include a request for comparison of the dump image to a load or ground
reference image, or for an image report on the dump image. CMS generates the dump image and
performs the comparison or generates the report as requested. A status is returned to FUI.

The CMS is also responsible for sending requested spacecraft memory image and map information
to FUI for displays and reports.

Analysis Subsystem - The FOS Analysis subsystem requests generation of a table load containing
spacecraft clock correlation data. CMS generates the table load and returns a status to Analysis.
Telemetry Subsystem - The FOS Telemetry subsystem requests generation of an Expected State
Table by CMS. CMS generates the table and returns it to Telemetry.

Data Management Subsystem - The CMS gets definitions of spacecraft tables, activities, and
commands from the Data Management Subsystem (DMS). These definitions are used in validating
and generating loads. DMS also provides constraint definitions, which are used in validating loads,
activities, and procedures, and command execution verification definitions, which are used in
generating expected state tables.

The CMS generates loads which will be uplinked by the Command Subsystem. The CMS stores
these loads, in the form of the binary uplink load, the load image, the load report, and the load
contents file from which the load was generated with DMS. For each load generated, CMS adds an
entry to the load catalog which is maintained by DMS.

The CMS gets raw memory dump telemetry from DMS and uses these data to construct a dump
image. This dump image may be input to a comparison, input to a report, or stored with DMS for
forwarding to the SCF or SDF.

Persistent data that must be maintained by CMS are periodically checkpointed to DMS and are read
in when CMS is initialized. These include spacecraft memory images and maps, the ground
schedule, and expected state tables.

The CMS sends event messages generated as a result of CMS processing to DMS. DMS passes
load uplink completion notification messages to CMS.

The CMS stores the reports that it generates with DMS.

3-4 305-CD-042-001

3.2 CMS Schedule Controller
The Schedule Controller is a persistent process that runs on the FOS Data Server. It is responsible
for initiating the generation of products that are based on schedules received from PAS. These
products include ATC loads, ground scripts, integrated reports, expected state tables, and
command-level constraint check results.

The schedules generated by PAS are sent to Schedule Controller in the form of activity lists.
Schedule Controller expands each activity in the list using a database definition of the activity and
creates a directive list representing the expanded activity list. Subsequent CMS processing of the
directive list by other CMS components is initiated and controlled by Schedule Controller.

3.2.1 CMS Schedule Controller Context

The CMS Schedule interfaces with several FOS subsystems, as shown in the Context Diagram and
summarized below.

Planning & Scheduling:

• Sends a DAS, which is a conflict free schedule of activities, to request ATC load
generation.

• Sends a Late Change, which is another form of DAS, to request regeneration of ATC
load(s).

• Sends a "What if" list, which is another form of a DAS that is only constraint checked and
no load is generated.

• Sends an uplink schedule, which is a DAS consisting of uplink activities. These activities
are added to the ground schedule.

• Receives a CMS Status, which returns the status of DAS, Late Change or "What if"
processing.

• Receives a list of uplink requests, which was generated when processing the input DAS or
Late Change activity list

CMS Load Catalog:

• Receives a load deletion request, which is a DAS id for which all associated loads are to be
deleted

• Receives a generate ATC load request, which is a list of directives from which an ATC
load is to be built.

CMS Ground Schedule:

• Provides a list of directives which will be used for continuity information in constraint
checking a directive list

3-5
305-C

D
-042-001

PAS

DMS

CMS
Schedule

CMS
Command

Model

CMS Ground
Schedule

CMS Load
Catalog

This System

DAS, Late Change,
"What If", Simulation,

Uplink Schedule

CMS Status,
Uplink Request

Events

Activity Definitions,
Command Definitions,

Rule-Based Constraint Definitions Command List

Constraint
Check
Status

Load Deletion
Request, Generate

Load Request

Directives,
Delete Directives,

Directive List Request

Directive List

Figure 3.2-1. Schedule Controller Context Diagram

3-6 305-CD-042-001

• Receives a delete directive list, which is a list of directives to be removed from the ground
schedule.

• Receives an add directive list, which is a list of directives to be added to the ground
schedule

 Data Management:

• Provides activity definitions, which contain the expansion instructions for an activity.

• Provides command definitions, which include the command execution verification
definitions and an optional rule based constraint definition.

• Receives events, which are status messages about CMS Schedule processing.

3.2.2 CMS Schedule Controller Interfaces

Table 3.2.2. CMS Schedule Controller Interfaces (1 of 3)

Interface
 Service

Interface Class Interface Class
Description

Service
Provider

Service User Frequency

DAS
Processing

FmMsProcessSchedule Proxy between PAS
and Schedule
Controller

CMS:
ScheduleController

PAS:
ATCLoadGenerator

1/day

FoScDetActSched List of scheduled
activities which
constitutes the
Detailed Activity
Schedule

FoScActivity Scheduled activities
that make up the
Detailed Activity
Schedule

FpCrConflictResponse Response to soft
constraints found in
DAS command list

Respond to
Activity
Schedule

FpCrStatusUpdater Proxy between PAS
and CMS:Schedule
Controller

PAS CMS:
Schedule
Controller

FoMsCMSStatus Results of Activity
List processing

FmPcUplinkSchedreq Request for
scheduling of uplink
times (only for DAS
and Late Change
processing).

Late
Change
Processing

FmMsProcessSchedule Proxy between PAS
and Schedule
Controller

CMS:
ScheduleController

PAS:
ATCLoadGenerator

1/week

FoScLateChange List of scheduled
activities which
constitutes the Late
Change Detailed
Activity Schedule

FoScActivity Scheduled activities
that make up the
Detailed Activity
Schedule

FoMsCMSStatus Status of Late
Change processing

3-7 305-CD-042-001

Interface
 Service

Interface Class Interface Class
Description

Service
Provider

Service User Frequency

FpCrConflictResponse Response to soft
constraints found in
DAS command list

FmPcUplinkSchedReq Request for
scheduling of ATC
load uplink

"What If"
Processing

FmMsProcessSchedule Proxy between PAS
and Schedule
Controller

CMS:
ScheduleController

PAS:
ATCLoadGenerator

1/week

FoScConstaintCheck List of scheduled
activities which
constitutes the
"What If" Activity
Schedule

FoScActivity Scheduled activities
that make up the
Activity Schedule

FoMsCMSStatus Status of What If
processing

Simulation
Processing

FmMsProcessSchedule Proxy between PAS
and Schedule
Controller

CMS:
ScheduleController

PAS:
ATCLoadGenerator

1/month

FoScSimulationSchedu
le

List of scheduled
activities which
constitutes the
Simulation Activity
Schedule

FoScActivity Scheduled activities
that make up the
Activity Schedule

FoMsCMSStatus Status of Simulation
processing

FpCrConflictResponse Response to soft
constraints found in
DAS command list

Validate
Commands

FmMsValidateConstrai
nts

Proxy between
CMS:CommandMo
del and CMS:
Schedule Controller

CMS: Command
Model

CMS
Schedule Controller

1/day

FmScContCk Request for
constraint check.

FoMsCMSStatus Status of constraint
check.

Check for
ATC Load

FmMsStoreATCLoad Proxy between
CMS:LoadCatalog
and CMS:
ScheduleController
checking for the
existence of a
specified load.

CMS:
Load Catalog

CMS:
ScheduleController

1/week

Delete ATC
Load

FmMsStoreATCLoad Proxy between
CMS:LoadCatalog
and CMS:
ScheduleController
requesting deletion
of a specified load.

CMS:
Load
Catalog

CMS:
ScheduleController

1/month

Table 3.2.2. CMS Schedule Controller Interfaces (2 of 3)

3-8 305-CD-042-001

Interface
 Service

Interface Class Interface Class
Description

Service
Provider

Service User Frequency

Store ATC
Load

FmMsStoreATCLoad Proxy between
CMS:LoadCatalog
and CMS:
ScheduleController
requesting storage
of an ATC load.

CMS:
Load
Catalog

CMS:
ScheduleController

1/day

FoLiATCLoad Contains ATC
binary load data

CMS: Load Catalog CMS:
Schedule Controller

1/day

Get ATC
Buffer Start
Time

FmSmMapBuffer Proxy between
CMS:Schedule
Controller and
CMS: Spacecraft
Model.

CMS: Spacecraft
Model

CMS:
Schedule Controller

1/day

FmMsATCBufferInfo Contains Detailed
Activity List and
start time of ATC
buffer

Map
Command
into ATC
Buffer

FmSmMapBuffer Proxy Between
CMS:Schedule
Controller and
CMS:Spacecraft
Model.

CMS:
SpacecraftModel

CMS:
Schedule Controller

1/day

FmMsLoadData Contains list of
directives for one
load.

FmMsATCMapRequest Request to Map one
ATC list into the
buffer model and
return a list of loads.

Delete
Directives

FmGsGroundData Proxy between
CMS:Schedule
Controller and
CMS: Ground
Schedule.
Requests deletion
of directives with
specified DAS id(s)
from the Ground
Schedule

CMS:
Ground
Schedule

CMS:
ScheduleController

1/month

Add
Directives

FmGsGroundData Proxy between
CMS:Schedule
Controller and
CMS: Ground
Schedule.

CMS:
Ground
Schedule

CMS:
ScheduleController

1/day

FmMnDirectiveList List of directives to
add to the Ground
Schedule.

Return
Directive
List

FmGsGroundData Proxy between
CMS:Schedule
Controller and
CMS: Ground
Schedule.

CMS:
Ground
Schedule

CMS:
ScheduleController

1/day

FmGsListRequest Contains list of DAS
id's and a time. All
directives in the
Ground Schedule
that occur after the
time and that have
DAS Id's that are in
the list will be
returned.

FmMnDirectiveList List of directives.

Table 3.2.2. CMS Schedule Controller Interfaces (3 of 3)

3-9 305-CD-042-001

3.2.3 CMS Schedule Controller Object Model

The object model for Schedule Controller is shown in Figure 3.2-2 and described below. The
FmScScheduleController object receives and manages requests for schedule-related CMS
services. An FoScActivityList request of type FoScDetActSched, FoScLateChange,
FoScConstraintCheck, or FoScSimulationSched contains a conflict free, time ordered list of
activities. The type determines if CMS will perform constraint checking only or constraint
checking and ATC load generation. FmScScheduleController processes each FoScActivityList
object it receives by expanding the activities in the list and building FmMnDirectiveList, which is
a list of FoEcDirectives.

 FmAcActivity is responsible for expanding the activity using information passed to it by
FmScScheduleController and supplied by FoAcActivityDefinition to generate the absolute times
and parameter list for each of the directives that make up the activity. FoAcActivityDefinition is
derived from FoDbAccessor and is responsible for retrieving the database definition of an activity
that FmAcActivity uses. If an activity definition includes an execute RTS or start procedure, these
are expanded into a list of directives at this time.

FmScScheduleController uses the proxy FmGsGroundData to retrieve the ground and space
directives from the ground schedule. The directives that are retrieved from the ground schedule
will be merged with the FmMnDirectiveList to create the FmScConstCk object. This
FmScConstCk object contains a time ordered list of ground directives and space directives to be
constraint checked.

A message is sent to FmScCommandModel via the FmMsValidateConstraints proxy to request
constraint checking the merged command list. Each command in the FmScConstCk list will be
constraint checked based on an optional constraint check rule that is associated with each
command.

 An FoMsCMSStatus reflects the status of CMS processing of an FoScActivityList and
is returned to FmScScheduleController and then passed to PAS via the FpCrStatusUpdater proxy
class.

FmScATCSchedule is responsible for coordinating the building of the load, generating load
reports, updating the load catalog, partitioning the load, and updating the ATC buffer model.
FmScATCSchedule invokes FmScMapBuffer, which is the proxy to the spacecraft model, to
partition the load based on the uplink time and the available space in the ATC buffer.
FmScMapBuffer returns a list of FmMsLoadData objects each which contain a load file and an
associated uplink window. For each FmMsLoadData object, FmScATCSchedule creates an
FoLiATCLoad object. The FoLiATCLoad object generates a binary load file and a load report.
After the load is generated, FmScATCSchedule uses accesses the FmMsStoreATCLoad object.
FmMsStoreATCLoad is the proxy to the load catalog and is responsible for updating the load
catalog with the information in the FoLiATCLoad object. For each partition load, an
FoScUplinkSchedule object, which contains the uplink window time of an ATC load, is created
and sent to PAS.

FmGsGroundData is the proxy to the FmScGroundSchedule, which is responsible for adding and
deleting directives in the ground schedule.

3-10
305-C

D
-042-001

FmScScheduleController

FmAcActivity

FoEvEventLogger

FmGsGroundData

{Gound Schedule Proxy}

{DMS Proxy}

FmScATCSchedule

FmPcUplinkSchedReq

FpCrConflictResponse

FoScActivityList

FoMsCMSStatus

myID

CreateConnection(EcTVoid)
DeleteBuffers(const RWSlistCollectables&)
Destroy(EcTVoid)
GetATCBufStartTime(const FoEcTime&)
MapATC(const FmMnDirectiveList&, const FOSTimeInterval&, const FoEcTime&,
EcTInt)

CONTINUED
Receive(EcTVoid)
Send(const RWCollectable&)
UpdateBuffer(const FmMsUpdateBuffer&)

FmMsProcessSchedule

{PAS Proxy}

myId
myStatus

CsIfMessageHandler

Connect()
Disconnect()
Receive()
Send()

myLoadName
myNumOf Partitions
mySizeOfLastPartition
mySizeOfLoad
myWindowInterval

FmSmMapBuffer

{Spacecraft Model Proxy}

FmMsStoreATCLoad

CheckForLoad(EcTInt)
CreateConnection()
DeleteLoads(const RWSlistCollectables&)
DestroyConnection()
Receive()
Send(const RWCollectable&)
StoreLoad(const FoLiATCLoad&)

{Load Catalog Proxy}

myDASidList
myEventPtr

InitializeController()
MessageHandler()
ProcessActivities(FoScActivityList)
ProcessDeleteReq(EcTInt)
SendEventMessage(FoEvEvent)
SendStatus(const FoMsCMSStatus)
SendUplinkSchedReq(FmPcUplinkSchedReq)

CONTINUED

FpCrStatusUpdater

CONTINUED

{PAS Proxy}

CreateConnection()
DeleteDirectives(const RWSlistCollectables&)
DeliverDirectives(const FmMnDirectiveList&)
DestroyConnection()
Receive()
ReturnCCList(const RWTime&, const RWSListCollectables&)
Send(const RWCollectable&)

FmMnDirectiveList

CONTINUED

Connect()
ConstraintOverride(enum(y, n))
DeleteLoads(EcTInt)
Disconnect()
ProcessActSchedule(FoScActivityList)
SendActSched(FoScActivityList)
SendDeleteReq(EcTInt)

 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : FmMsATCBufferInfo
 + : RWSlistCollectables&

 + : RWSlistCollectables&
 + : EcTVoid
 + : EcTVoid

 - : EcTInt
 - : RWCString

 +
 +
 +
 +

 - : RWString
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : FOSTimeInterval + : EcTInt

 + : EcTInt
 + : EcTInt
 + : EcTVoid
 - : EcTInt
 - : EcTVoid
 + : EcTInt

 - : RWSlistCollectables
 - : FoEvEvent*

 - : EcTVoid
 + : EcTVoid

 - : EcTInt
 - : EcTVoid
 - : EcTVoid
 - : EcTVoid

 - : EcTInt
 + : EcTVoid
 + : EcTVoid
 - : EcTVoid
 - : RWCollectable
 + : FmMnDirectiveList
 - : EcTVoid

 - : EcTInt
 + : EcTVoid
 + : EcTInt
 - : EcTVoid
 + : EcTVoid
 - : EcTVoid
 - : EcTVoid

sends
directives

fo

sends

sends

is sent
to

sends

is sent to

sends

handles
IPC

is sent DASid

is sent by

is received
by

is received
by

send delete request

sends directives
to

expands

creates

sends

Figure 3.2-2. Schedule Controller Object Model - Page 1

3-11
305-C

D
-042-001

FoScActivityList FoScActivity

FoScUplinkActivity

FoScDetActSched

FoScLateChange

FoScSimulationSched

FoScConstraintCheckFoScUplinkSchedule

FoScOrbitalEvents myActId
myActDefName
myStartTime
myStopTime
myParamValueList

myLoadName

myId

myATCBufferStart
myStartTime
myStopTime
myVersion

myOrbitalEvent
myStartTime
myStopTime
myUplinkWindowReq
myVersion

myStartTime

myTime
myName

 - : EcTInt
 - : RWString
 - : RWTime
 - : RWTime
 - : RWSlistCollectables

± : RWString

 - : EcTInt

 - : EcTInt = 0
 - : RWTime
 - : RWTime
 - : RWString

 ± : RWSlistCollectables
 ± : RWTime
 ± : RWTime
 ± : FOSTimeInterval
 ± : RWString

 - : RWTime

 - : RWTime
 - : RWString

Figure 3.2-3. Schedule Controller Object Model - Page 2

3-12
305-C

D
-042-001

FmMnDirectiveList

FmScDAS
FmScSim

FmScWhatIfFmScUplinkSched

FmMsValidateConstraints

FmScConstCk

CreateConnection()
DestroyConnection()
Receive()
Send(const RWCollectable&)
ValidateCommands(const FmScConstCk&)
ValidateRTS(const RWCString&, const RWCString&)

MergeWithFilter(const RWDlistCollectables)

{Command Model Proxy}

FmScLateChg

FoEcDirective

myId
myStartTime
myStopTime

FmMnDirectiveList(FpCrActivityList)
CreateExpandedList(FpCrActivityList)
FindConstraints()
MergeWithList(const RWDlistCollectables)

myOrbitalEvents

FindConstraints()
GetPartitions(const RWTime)

 + : EcTInt
 + : EcTVoid
 + : FoMsCMSStatus&
 + : FoMsCMSStatus&
 + : FoMsCMSStatus&
 + : FoMsCMSStatus&

 + : EcTVoid

 - : EcTInt
 - : RWTime
 - : RWTime

 + : EcTVoid
 + : EcTVoid
 + : FoMsCMSStatus
 +

 - : RWSlistCollectables

 + : FoMsCMSStatus
 + : RWSlistCollectables

is sent
by

Figure 3.2-4. Schedule Controller Object Model - Page 3

3-13
305-C

D
-042-001

FoEcSpaceDirective

FoEcGroundDirective

FoEcComment

FoEcProcedureCall

FoEcRTCommand

FoEcUplinkCommand

FoEcLogicalExp

myOperator

Evaluate(FuClLiteral value1, FuClLiteral value2)
Evaluate(FuClLiteral value1)

FoEcTime

FoEcDeltaTime

FoEcAbsoluteTime

FoEcSpaceTime

FoEcOrbitalEventDirective

FoEcDirective

FoEcLabel
FoEcWait

FoEcElse

FoEcElseIf

FoEcEndIf

FoEcEndProc
FoEcExecRTS

myKeyword

RWTime

myPlusMinusSign
myStartStopIndicator

myName
myOffset

Jump()

myKeywordmyBinary
myMnemonic

myBinary

myInhibitId
myMnemonic
myRTSFlag

myEpoch

myConversionFactor

FigureBinary()

RWBitVec

vec_
npts_

clearBit(unsigned int)
data()
firstFalse()
firstTrue()
isEqual(const RWBitVec&)
length()
printOn(ostream&)
restoreFrom(RWvistream&)
restoreFrom(RWFile&)
resize(unsigned int)
saveOn(RWvostream&)
saveOn(RWFile&)
scanFrom(istream&)

setBit(unsigned int)
testBit(unsigned int)
indexRangeErr(unsigned int)

lengthErr(unsigned int,unsigned int)
nbytes()
nfull()

myCriticalFlag

FoScActivityInfo

myActivityId
myNumberSpaceCommands

FoEcParameter

myMnemonic
myValue

myActivityId
myConstraints
myDASId
myDataSourceId
myDirectiveText
myGndScript
myLineNum
myParameters
myProc
myProcControl
myProcFlag
mySource
myStatus

CheckSyntax(EcTInt errcode)
Execute()
LogDirective()
Parse()
UpdateStatus()

 _ : EcTInt

 + : EcTInt
 + : EcTInt

 _ : RWCString

 _ : EcTChar
 _ : EcTChar

 _ : RWCString
 _ : EcTInt

 + : EcTVoid

 _ : RWCString _ : RWBitVec
 _ : RWCString

 _ : RWBitVec

 _ : EcTInt
 _ : RWCString
 _ : EcTInt

 _ : RWTime

 _ : EcTFloat = 1.024

 + : EcTInt

 _ : RWByte*
 _ : size_t

 + : void
 + : const RWByte*
 + : size_t
 + : size_t
 + : RWBoolean
 + : size_t
 + : ostream&
 + : void
 + : void
 + : void
 + : void
 + : void
 + : istream&
 _ : void
 _ : size_t
 _ : size_t

 _ : EcTInt

 _ : EcTInt
 _ : EcTInt

 _ : EcTInt
 _ : RWSlistCollectables
 _ : EcTInt
 _ : FuTdDataSource* = NULL
 _ : RWCString
 _ : FuGsGroundScriptControl*
 _ : EcTInt
 _ : RWSlistCollectables
 _ : FoClProcedure*
 _ : FuClProcControlWin*
 _ : enum {y,n}
 _ : enum{manual,proc,gs}
 _ : EcTInt

 +
 +
 +
 +
 +

Figure 3.2-5. Schedule Controller Object Model - Page 4

3-14
305-C

D
-042-001

FmAcActivity

FoAcActivityDef

FmExProcedure

FoEcDirective

CONTINUED

FmExRTS

FoEcDirective

CONTINUED

ExpandActivity(FpCrActivity&)

myDirectiveList
myExecTime
myRTSNum

ExpandRTS(RWDlistCollectables, RWDlistCollectables)

myDirectiveList
myExecTime
myFilename

ExpandProcedure(RWDlistCollectalbes)

FoEcDirective

FoDbAccessor

 + : RWDlistCollectables

 - : RWDlistCollectables
 - : RWTime
 - : EcTInt

 + : EcTInt

 - : RWDlistCollectables
 - : RWTime
 - : RWCString

 + : EcTInt

expand

request
definition

expand

Figure 3.2-6. Schedule Controller Object Model - Page 5

3-15
305-C

D
-042-001

FmScATCSchedule

FoLiATCLoad

CONTINUED

CONTINUED

FmScScheduleController
FmMsStoreATCLoad

FmPcUplinkSchedReq

{Proxy to FmLdLoadCatalog

FmSmMapBuffer

FmMsLoadData
myLoadName
myNumOf Partitions
mySizeOfLastPartition
mySizeOfLoad
myWindowInterval

{Proxy to FmSmSpacecraft}

CheckForLoad(EcTInt)
CreateConnection()
DeleteLoads(const RWSlistCollectables&)
DestroyConnection()
Receive()
Send(const RWCollectable&)
StoreLoad(const FoLiATCLoad&)

CreateConnection(EcTVoid)
DeleteBuffers(const RWSlistCollectables&)
Destroy(EcTVoid)
GetATCBufStartTime(const FoEcTime&)
MapATC(const FmMnDirectiveList&, const FOSTimeInterval&, const FoEcTime&,
EcTInt)
Receive(EcTVoid)
Send(const RWCollectable&)
UpdateBuffer(const FmMsUpdateBuffer&)

myUplinkPeriod

GenerateLoad(FmScDAS)
GenerateLtChgLoad(FmScDAS, RWSlistCollectables)

myDirListAddr
myDirectiveList
myLoadName
myUplinkWindow

 - : RWString
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : FOSTimeInterval

 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTVoid
 - : EcTInt
 - : EcTVoid
 + : EcTInt

 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : FmMsATCBufferInfo
 + : RWSlistCollectables&

 + : RWSlistCollectables&
 + : EcTVoid
 + : EcTVoid

 - : FOSTimeInterval

 + : RWSlistCollectables
 + : RWSlistCollectables

 - : EcTInt
 - : FmMnDirectiveList
 - : RWCString
 - : FOSTimeInterval

controls

adds load to/
deletes loads from

sends load info

is sent
by

receives
is created

by

creates/sends

is sent to
FmLdLoadCatalog

Figure 3.2-7. Schedule Controller Object Model - Page 6

3-16
305-C

D
-042-001

FoLiUplinkLoad

FoLiLoadContents

FoLiLoadReport
FoLiATCLoadReport

myEndLocation
myLoadName
mySize
myStartLocation
myType
myUplinkPeriod

BuildLoad(const FoLiLoadImage&)
BuildLoadData(EcTInt[])
CCSDSWrap(EcTInt[])

myCommandList
myControlCommands
myStartTime
myStopTime
myUplinkTime

FoLiLoadImage

FoLiLoad

myDestination
myDirectory
myLoadContents
myLoadName
myLoadSize
myNumberOfPieces
myOwner
mySizeOfLastPiece
mySpacecraftId
myStatus
myUplinkLoads
myUplinkPeriod

BuildUplinkLoad(const FoLiLoadImage&)
ComposeReport()
CreateLoad(const FoMsLoadGenReq&)
GenerateLoadImage(const FoLiLoadContents&)

FoLiATCLoad

myCriticalCommands
myCriticalFlag
myDASId
myDirectiveList
myLoadReport

BuildUplinkLoad()
ComposeReport()
CreateLoad(const FmMnDirectiveList&)

 - : EcTInt
 - : RWCString
 - : EcTInt
 - : EcTInt
 - : RWCString
 - : FOSTimeInterval

 + : EcTInt
 + : EcTInt*
 + : EcTInt*

 - : FmScCommandList
 - : FmScCommandList
 - : RWTime
 - : RWTime
 - : RWTime

 - : RWCString
 - : RWCString
 - : FoLiLoadContents
 - : RWCString
 - : EcTInt
 - : EcTInt

- : RWCString
 - : EcTInt
 - : EcTInt
 - : FoMsCMSStatus

- : RWSlistCollectables
 - : FOSTimeInterval

+ : EcTInt
 + : EcTInt

+ : FoMsCMSStatus&
 + : EcTInt

 - : FmMnDirectiveList
 - : EcTInt
 - : EcTInt
 - : FmMnDirectiveList
 - : FoLiATCLoadReport*

 + : EcTInt
 + : EcTInt
 + : FoMsCMSStatus&

1+

Figure 3.2-8. Schedule Controller Object Model - Page 7

3-17
305-C

D
-042-001

FoMsConflictInfo

myCmdMnemonic
myConflictingCmd
myConstraintTime
myId
mySoftHardFlag
myViolationInfo

FoMsCMSStatus

FoMsStatusFailed FoMsStatusComplete FoMsStatusPending

FpCrStatusUpdater

[PAS To CMS Proxy}

myId
myStatus

FoPcUplinkSchedReq

FpCrStatusUpdater()
FpCrStatusUpdater(const FpCrStatusUpdater&)
~FpCrStatusUpdater()
operator=(const FpCrStatusUpdater&)
scheduleUplinkReq(const FoPcUplinkSchedReq)
sendStatus(FoMsCMSStatus &)

myLoadName
myNumOf Partitions
mySizeOfLastPartition
mySizeOfLoad
myWindowInterval

 - : RWCString
 - : RWCString
 - : RWTime
 - : EcTInt
 - : EcTInt
 - : RWCString

 - : EcTInt
 - : RWCString

 +
 +
 +
 +
 +
 + : int

 - : RWCString
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : FOSTimeInterval

sends
sends

Figure 3.2-9. Schedule Controller Object Model - Page 8

3-18 305-CD-042-001

3.2.4 CMS Schedule Controller Dynamic Model

The Schedule Controller Dynamic Model described in this section consists of the following
scenarios:

• Schedule Controller Initiation

• Detailed Activity Schedule Receipt with no constraint violations

• Detailed Activity Schedule Receipt with soft constraint violations

• Detailed Activity Schedule Receipt with hard constraint violations

• Late Change Receipt with soft constraint violations

• Constraint Check Only Receipt

3.2.4.1 Schedule Controller Initialization Scenario

3.2.4.1.1 Schedule Controller Initialization Scenario Abstract

The Schedule Controller Initialization scenario describes the process of initializing the Schedule
Controller process.

3.2.4.1.2 Schedule Controller Initialization Summary Information

Interfaces:

• DMS

• Planning and Scheduling

• CMS Command Model

• CMS Spacecraft Model

• CMS Load Catalog

• CMS Ground Schedule

Stimulus:

• Schedule Controller is started

Desired Response:

• Establish connection to Planning and Scheduling

• Establish connection to Command Model

• Establish connection to Spacecraft Model

• Establish connection to Load Catalog

• Establish connection to Ground Schedule

3-19
305-C

D
-042-001

FmGsGroundData
FmScSchedule

Controller FmMsProcessSchedule FmMsValidateConstraints FmSmMapBufferFmMsStoreATCLoad DMS

Connect to PAS

Connect to Command Model

Connect to Ground Schedule

Connect to Load Catalog

Receive Connection
Status

Receive Connection Status

Receive Connection Status

Connect to Spacecraft Model

Receive Connection Status

Receive Connection Status

Request DAS id List

Receive DAS id List

Figure 3.2-10. Schedule Controller Initialization Event Trace

3-20 305-CD-042-001

• Retrieval of the DAS id list

Pre-Conditions:

• DMS software has been initiated

• Planning and Scheduling software has been initiated

• CMS Command Model software has been initiated

• CMS Spacecraft Model software has been initiated

• CMS Load Catalog software has been initiated

• CMS Ground Schedule software has been initiated

Post-Conditions:

• Schedule Controller up and running

3.2.4.1.3 Schedule Controller Initialization Scenario Description

The Schedule Controller Initialization Scenario event trace diagram is shown in Figure 3.2-10. The
Schedule Controller will make the necessary connections to it's external entities. These are:

• Planning and Scheduling via the FmMsProcessSchedule proxy

• Load Catalog via the FmMsStoreATCLoad proxy

• Spacecraft Model via the FmSmMapBuffer proxy

• Ground Schedule via the FmGsGroundData proxy

• Command Model via the FmMsValidateContraints proxy

The Schedule Controller will also access the data base in order to retrieve the latest DAS id list. If
this list is not available then the Schedule Controller will create an empty id list. After the
connections are made and the DAS id list set-up, the Schedule Controller will be waiting to receive
input from the PAS subsystem.

3.2.4.2 Detailed Activity Schedule Receipt with No Constraint Violations Scenario

3.2.4.2.1 Detailed Activity Schedule Receipt with No Constraint Violations Scenario
Abstract

The Detailed Activity Schedule Receipt scenario describes the receipt of a Detailed Activity
Schedule (DAS) from PAS, the expansion of the activities in the DAS into directives, requesting
command-level constraint checking of the expanded list, generation of ATC loads, and merging
the ground directives into the Ground Schedule.

3-21
305-C

D
-042-001

{proxy}
FmGsGroundData

FmAcActivity
FOS
Data

Management

FmScSchedule
Controller

FmMsProcess
Schedule

{proxy}
FmScValidateConstraints

{proxy}
FmSmMapBufferFmScATCSchedule

(proxy)

FoLiATCLoad {proxy}
FmMsStoreATCLoad

Process DAS
Send Acitivity Name

Return Activity
Definition

Return Command
List

Send CMS
Status

Send DAS Command List

Send DAS
Command List

Return CMS
Status

Return Status

Return Start Time of
Most Recent Buffer

Send Expanded
DAS

Request Activity
Definition

Access Buffer
Model

Send Start Time of Buffer Model

Return List of Commands from Ground Schedule

Request Partitions

Return Partiions Load(s)

Send Generate Binary Load Request

Return Binary Load(s)

Update Load Catalog

Update Buffer Model

Figure 3.2-11. Schedule Controller DAS Receipt Event Trace - No Constraint Violations

3-22 305-CD-042-001

3.2.4.2.2 Detailed Activity Schedule Receipt with No Constraint Violations Summary
Information

Interfaces:

• Planning & Scheduling

• DMS

• CMS Command Model

• CMS Spacecraft Model

• CMS Load Catalog

• CMS Ground Schedule

Stimulus:

• Receipt of DAS Activity List

Desired Response:

• ATC load(s) for time span of DAS stored in ATC Load Catalog

• Ground Schedule updated with directives and orbital events for time span of DAS

• Status returned to PAS

Pre-Conditions:

• Schedule Controller software has been initiated

Post-Conditions:

• Updated list of processed Detailed Activity Schedules stored with DMS

3.2.4.2.3 Detailed Activity Schedule Receipt with No Constraint Violations Scenario
Description

This scenario is shown in Figure 3.2-11 and can be broken down into 5 main functions:

• DAS receipt

• Activity Expansion

• Retrieval of Directives from the ATC Buffer Model for Continuity in Constraint Checking

• Constraint Checking

• ATC Load Generation

The Schedule Controller receives a Detailed Activity Schedule activity list object from PAS and
instantiates a DAS Directive List object to receive the expanded activities.

3-23 305-CD-042-001

For each activity in the Activity List, the Schedule Controller instantiates an Activity object and
invokes its expand function. The Activity instantiates an Activity Definition object which retrieves
the activity definition from DMS. Activity converts each command in the database definition of
the activity to a Directive object of the appropriate type. Each Directive is merged in time order
into the DAS Command List.

Once all activities in the DAS have been expanded into directives, the Schedule Controller
retrieves space directives from the ATC Buffer Model. The Schedule Controller instantiates a
constraint check list and the Spacecraft Model adds the directives from the most recent ATC buffer
to this constraint check list. These directives are needed in order to maintain continuity in
constraint checking the DAS. The constraint check list will then merge the directives from
expanding the DAS into itself, and this constraint check list is what will be constraint checked.

Next the Schedule Controller sends a message to the Command Model object to constraint check
the merged constraint check list. The Command Model object will iterate through each command
in the command list. Each command can have an optional constraint rule associated with it. Each
rule is identified and the associated command is constraint checked based on the rule. Since no
constraints were found when constraint checking the DAS, processing continues without
interruption.

In order to build the load, Schedule Controller invokes the create load function of ATC Schedule.
The create load function accepts a directive list that contains a list of the space directives from the
expansion of the DAS activities. ATC Schedule invokes the Spacecraft Model via a proxy. The
Spacecraft model computes the number of partitions that the load will need to be broken into based
on the uplink period and the available space in the ATC buffer. The Spacecraft Model creates a
working ATC buffer model for each of the partitions and returns a list of Load Data objects. Each
Load Data object contains the partitioned load and an associated uplink window. For each Load
Data object in the list, ATC Schedule creates an ATC Load object and invokes the create load
function in ATC Load. ATC Load builds the binary load and the load report from the input list of
directives. ATC Schedule then updates the load catalog via the Store ATC Load proxy. Store ATC
Load creates an entry for the generated load in the load catalog. After the load catalog is updated,
ATC Schedule promotes the working ATC buffer model to a predicted ATC buffer models via the
Spacecraft Model proxy.

Finally the Schedule Controller invokes the DAS processing function of Ground Schedule. The
Ground Schedule merges the Directives in the DAS Command List into its time ordered directive
list.

3-24
305-C

D
-042-001

{proxy}
FmGsGroundData

FmAcActivity
FOS
Data

Management

FmScSchedule
Controller

FmMsProcess
Schedule

{proxy}
FmScValidateConstraints

{proxy}
FmSmMapBufferFmScATCSchedule

(proxy)

FoLiATCLoad {proxy}
FmMsStoreATCLoad

Process DAS
Send Acitivity Name

Return Activity
Definition

Return Command
List

Send CMS
Status

Send DAS Command List

Send DAS
Command List

Return CMS
Status

Return Status

Send CMS
Status

Send Constraint
Override

Return Start Time of
Most Recent Buffer

Send Expanded
DAS

Request Activity
Definition

Access Buffer
Model

Send Start Time of Buffer Model

Return List of Commands from Ground Schedule

Request Partitions

Return Partiions Load(s)

Send Generate Binary Load Request

Return Binary Load(s)

Update Load Catalog

Update Buffer Model

Figure 3.2-12. DAS Receipt Scenario - Soft Constraint Violation

3-25 305-CD-042-001

3.2.4.3 Detailed Activity Schedule Receipt with Soft Constraint Violations Scenario

3.2.4.3.1 Detailed Activity Schedule Receipt with Soft Constraint Violations
Scenario Abstract

The Detailed Activity Schedule Receipt scenario describes the receipt of a Detailed Activity
Schedule (DAS) from PAS, the expansion of the activities in the DAS into directives, requesting
command-level constraint checking of the expanded list, sending a soft constraint status to PAS,
receiving an override soft constraint message from PAS, generation of ATC loads, and merging
the ground directives into the Ground Schedule.

3.2.4.3.2 Detailed Activity Schedule Receipt with Soft Constraint Violations
Summary Information

Interfaces:

• Planning & Scheduling

• DMS

• CMS Command Model

• CMS Spacecraft Model

• CMS Load Catalog

• CMS Ground Schedule

Stimulus:

• Receipt of DAS Activity List

Desired Response:

• Find soft constraint, send soft constraint status to PAS and receive override message from
PAS

• ATC load(s) for time span of DAS stored in ATC Load Catalog

• Ground Schedule updated with directives and orbital events for time span of DAS

• Status returned to PAS

Pre-Conditions:

• Schedule Controller software has been initiated

Post-Conditions:

• Updated list of processed Detailed Activity Schedules stored with DMS

3-26 305-CD-042-001

3.2.4.3.3 Detailed Activity Schedule Receipt with Soft Constraint Violation Scenario
Description

This scenario is shown in Figure 3.2-12 and can be broken down into 5 main functions:

• DAS receipt

• Activity Expansion

• Retrieval of Directives from the ATC Buffer Model for Continuity in Constraint Checking

• Constraint Checking

• ATC Load Generation

The Schedule Controller receives a Detailed Activity Schedule activity list object from PAS and
instantiates a DAS Directive List object to receive the expanded activities.

For each activity in the Activity List, the Schedule Controller instantiates an Activity object and
invokes its expand function. The Activity instantiates an Activity Definition object which retrieves
the activity definition from DMS. Activity converts each command in the database definition of
the activity to a Directive object of the appropriate type. Each Directive is merged in time order
into the DAS Command List.

Once all activities in the DAS have been expanded into directives, the Schedule Controller
retrieves space directives from the ATC Buffer Model. The Schedule Controller instantiates a
constraint check list and the Spacecraft Model adds the directives from the most recent ATC buffer
to this constraint check list. These directives are needed in order to maintain continuity in
constraint checking the DAS. The constraint check list will then merge the directives from
expanding the DAS into itself, and this constraint check list is what will be constraint checked.

Next the Schedule Controller sends a message to the Command Model object to constraint check
the merged constraint check list. The Command Model object will iterate through each command
in the command list. Each command can have an optional constraint rule associated with it. Each
rule is identified and the associated command is constraint checked based on the rule. For a soft
constraint is violation, a CMS Pending Status object is sent to PAS and DAS processing waits for
a response from PAS on whether to continue to process the DAS with soft constraints or to cease
processing. Upon the Schedule Controller receiving a override soft constraint indication,
processing continues.

3-27 305-CD-042-001

In order to build the load, Schedule Controller invokes the create load function of ATC Schedule.
The create load function accepts a directive list that contains a list of the space directives from the
expansion of the DAS activities. ATC Schedule invokes the Spacecraft Model via a proxy. The
Spacecraft model computes the number of partitions that the load will need to be broken into based
on the uplink period and the available space in the ATC buffer. The Spacecraft Model creates a
working ATC buffer model for each of the partitions and returns a list of Load Data objects. Each
Load Data object contains the partitioned load and an associated uplink window. For each Load
Data object in the list, ATC Schedule creates an ATC Load object and invokes the create load
function in ATC Load. ATC Load builds the binary load and the load report from the input list of
directives. ATC Schedule then updates the load catalog via the Store ATC Load proxy. Store ATC
Load creates an entry for the generated load in the load catalog. After the load catalog is updated,
ATC Schedule promotes the working ATC buffer model to a predicted ATC buffer models via the
Spacecraft Model proxy.

Finally the Schedule Controller invokes the DAS processing function of Ground Schedule. The
Ground Schedule merges the Directives in the DAS Command List into its time ordered directive
list.

3-28
305-C

D
-042-001

{proxy}
FmGsGroundData FmAcActivity

FOS
Data

Management

FmScSchedule
Controller

FmMsProcess
Schedule

FmScValidateConstraints
{proxy}

FmSmMapBufferFmScATCSchedule

(proxy)(proxy)

Process DAS

Send Acitivity Name

Return Activity
Definition

Return Command
List

Send DAS
Command List

Return CMS
Status

Send CMS
Status

Return Start Time of
Most Recent Buffer

Request Activity
Definition

Access Buffer
Model

Send Start Time of Buffer Model

Return List of Commands from Ground Schedule

Figure 3.2-13. DAS Receipt Scenario - Hard Constraint Violation

3-29 305-CD-042-001

3.2.4.4 Detailed Activity Schedule Receipt with Hard Constraint Violations
Scenario

3.2.4.4.1 Detailed Activity Schedule Receipt with Hard Constraint Violations
Scenario Abstract

The Detailed Activity Schedule Receipt scenario describes the receipt of a Detailed Activity
Schedule (DAS) from PAS, the expansion of the activities in the DAS into directives, requesting
command-level constraint checking of the expanded list, sending a hard constraint status to PAS.

3.2.4.4.2 Detailed Activity Schedule Receipt with Hard Constraint Violations
Summary Information

Interfaces:

• Planning & Scheduling

• DMS

• CMS Command Model

• CMS Spacecraft Model

Stimulus:

• Receipt of DAS Activity List

Desired Response:

• Find hard constraint, and send hard constraint status to PAS.

Pre-Conditions:

• Schedule Controller software has been initiated

Post-Conditions:

• none

3.2.4.4.3 Detailed Activity Schedule Receipt with Hard Constraint Violation
Scenario Description

This scenario is shown in Figure 3.2-13 and can be broken down into 4 main functions:

• DAS receipt

• Activity Expansion

• Retrieval of Directives from the ATC Buffer Model for Continuity in Constraint Checking

• Constraint Checking

The Schedule Controller receives a Detailed Activity Schedule activity list object from PAS and
instantiates a DAS Directive List object to receive the expanded activities.

3-30 305-CD-042-001

For each activity in the Activity List, the Schedule Controller instantiates an Activity object and
invokes its expand function. The Activity instantiates an Activity Definition object which retrieves
the activity definition from DMS. Activity converts each command in the database definition of
the activity to a Directive object of the appropriate type. Each Directive is merged in time order
into the DAS Command List.

Once all activities in the DAS have been expanded into directives, the Schedule Controller
retrieves space directives from the ATC Buffer Model. The Schedule Controller instantiates a
constraint check list and the Spacecraft Model adds the directives from the most recent ATC buffer
to this constraint check list. These directives are needed in order to maintain continuity in
constraint checking the DAS. The constraint check list will then merge the directives from
expanding the DAS into itself, and this constraint check list is what will be constraint checked.

Next the Schedule Controller sends a message to the Command Model object to constraint check
the merged constraint check list. The Command Model object will iterate through each command
in the command list. Each command can have an optional constraint rule associated with it. Each
rule is identified and the associated command is constraint checked based on the rule. When a hard
constraint is violated, a CMS Failed Status object is sent to PAS and processing of the DAS ceases.

3.2.4.5 Late Change Receipt Scenario

3.2.4.5.1 Late Change Receipt Scenario Abstract

The Late Change Receipt scenario describes the receipt of a Detailed Activity Schedule containing
late change information from PAS, the deletion of loads and ground directives generated from the
same DAS when it was previously processed and any subsequent DASs already processed, the
expansion of the activities in the DAS into directives, command-level constraint checking of the
expanded list, generation of ATC loads, and merging the ground directives into the Ground
Schedule.

3.2.4.5.2 Late Change Receipt Summary Information

Interfaces:

• Planning & Scheduling
• DMS
• CMS Command Model
• CMS Spacecraft Model
• CMS Load Catalog
• CMS Ground Schedule

Stimulus:

• Receipt of Late Change Activity List

Desired Response:

• ATC load(s) built from late change DAS and subsequent DASs deleted from DMS

3-31
305-C

D
-042-001

FmGsGround
Data

{proxy}
FOS Data

ManagementFoLiATCLoad
FmScSchedule

Controller

FmMsProcess
Schedule

{PAS proxy}
FmAcActivity

FmScValidate
Constraints

{oroxy}
FmMsStoreATCLoad

{proxy}FmMsATCSchedule
FmSmMapBuffer

{proxy}

Process Late
Change

Send Activity Name

Return Command List

Send Delete Request

Perform Delete

Send CMS
Status

Return Activity
Definition

Semd :ate Change List

Send Late
Change List

Return Status

Send CMS
Status

Process
Constraint
Override

Request Activity
Definition

Send Late
Change DAS Send Late Change

DAS id

Return Uplink
Status

Send Generate Binary Load Request

Return Binary Loads

Update Load
Catalog

Send Start Time of Late Change

Return Starrt Time of Buffer Model

Send Start Time of Buffer

Return CMS
Status

Return List of Command from Ground Schedule

Reuest Partitions

Return Partitioned Load(s)

Update Buffer Model

Figure 3.2-14. Late Change Receipt Event Trace

3-32 305-CD-042-001

• Directives from late change DAS and subsequent DASs deleted from Ground Schedule

• ATC load(s) for time span of DAS stored in ATC Load Catalog

• Ground Schedule updated with directives and orbital events for time span of DAS

• Status returned to PAS

Pre-Conditions:

• Schedule Controller software has been initiated

• Spacecraft Model software has been initiated

• Load Catalog software has been initiated

• Ground Schedule software has been initiated

• Command Model software has been initiated

Post-Conditions:

• Updated list of processed Detailed Activity Schedules stored with DMS

3.2.4.5.3 Late Change Receipt Scenario Description

This scenario is shown in Figure 3.2-14 and can be broken down into 6 main functions:

• Late Change receipt

• Activity Expansion

• Retrieval of Directives from the ATC Buffer Model for Continuity in Constraint Checking

• Constraint Checking

• ATC Load Generation

• Deletion of CMS Schedule Products

The Schedule Controller receives a Late Change Detailed Activity Schedule activity list object
from PAS and instantiates a DAS Directive List object to receive the expanded activities.

For each activity in the Activity List, the Schedule Controller instantiates an Activity object and
invokes its expand function. The Activity instantiates an Activity Definition object which retrieves
the activity definition from DMS. Activity converts each command in the database definition of
the activity to a Directive object of the appropriate type. Each Directive is merged in time order
into the DAS Command List.

Once all activities in the DAS have been expanded into directives, the Schedule Controller
retrieves space directives from the ATC Buffer Model. The Schedule Controller instantiates a
constraint check list and the Spacecraft Model adds the directives from the most recent ATC buffer
to this constraint check list. These directives are needed in order to maintain continuity in
constraint checking the DAS. The constraint check list will then merge the directives from
expanding the DAS into itself, and this constraint check list is what will be constraint checked.

Next the Schedule Controller sends a message to the Command Model object to constraint check
the merged constraint check list. The Command Model object will iterate through each command
in the command list. Each command can have an optional constraint rule associated with it. Each
rule is identified and the associated command is constraint checked based on the rule. Since no
constraints were found when constraint checking the DAS, processing continues without
interruption.

3-33 305-CD-042-001

In order to build the load, Schedule Controller invokes the create load function of ATC Schedule.
The create load function accepts a directive list that contains a list of the space directives from the
expansion of the DAS activities. ATC Schedule invokes the Spacecraft Model via a proxy. The
Spacecraft model computes the number of partitions that the load will need to be broken into based
on the uplink period and the available space in the ATC buffer. The Spacecraft Model creates a
working ATC buffer model for each of the partitions and returns a list of Load Data objects. Each
Load Data object contains the partitioned load and an associated uplink window. For each Load
Data object in the list, ATC Schedule creates an ATC Load object and invokes the create load
function in ATC Load. ATC Load builds the binary load and the load report from the input list of
directives. ATC Schedule then updates the load catalog via the Store ATC Load proxy. Store ATC
Load creates an entry for the generated load in the load catalog. After the load catalog is updated,
ATC Schedule promotes the working ATC buffer model to a predicted ATC buffer models via the
Spacecraft Model proxy.

The Schedule Controller creates a list of DAS ids that have been previously processed and have
starting times after the late change DAS. These DAS ids are then removed from the list of pro-
cessed DASs maintained by the Schedule Controller. The Schedule Controller sends the list of
DAS id that are after the Late Change to Load Catalog. Load Catalog deletes the ATC loads that
were generated from those DASs and their associated entries from the Load Catalog. Next the
Spacecraft Model will delete the ATC buffer models associated with each DAS id in the list the
Ground Schedule deletes all Directives associated with those DASs from the ground schedule.

Finally the Schedule Controller invokes the DAS processing function of Ground Schedule. The
Ground Schedule merges the Directives in the DAS Command List into its time ordered directive
list.

3.2.4.6 "What-if" Scenario

3.2.4.6.1"What-if" Scenario Abstract

The Constraint Check Receipt scenario describes the receipt of a Detailed Activity Schedule con-
taining activities to be constraint checked, the expansion of the activities in the DAS into direc-
tives, and command-level constraint checking of the expanded list.

3-34
305-C

D
-042-001

FOS Data
Management

FmScSchedule
Controller

FmMsProcess
Schedule
{proxy} FmAcActivity

FmScValidateConstraints
{proxy}

Constraint
Check Req

Send Activity Name

Return Directives

Send CMS
Status

Return Activity
Definition

Send Expanded
Command List

Return Status

Request Activity
Definition

Figure 3.2-15. "What-if" Receipt Scenario - Hard Constraint Violation

3-35 305-CD-042-001

3.2.4.6.2"What-if" Receipt Summary Information

Interfaces:

Planning & Scheduling
DMS
CMS Command Model

Stimulus:

Receipt of Constraint Check Activity List

Desired Response:

Status returned to PAS

Pre-Conditions:

Schedule control software has been initiated
Command Model software has been initiated

Post-Conditions:

none

3.2.4.6.3"What-if" Receipt Scenario Description

The event trace diagram for this scenario is in Figure 3.2-15 and can be broken down into 3 main
functions:

Constraint Check receipt
Activity Expansion
Constraint Checking

The Schedule Controller receives a "What-if" activity list object from PAS and instantiates a DAS
constraint check list object to receive the expanded activities.

For each activity in the "What-if" Activity List, the Schedule Controller instantiates an Activity
object and invokes its expand function. The Activity instantiates an Activity Definition object
which retrieves the activity definition from DMS. Activity converts each command in the database
definition of the activity to a Directive object of the appropriate type. Each Directive is merged in
time order into the DAS Command List.

Once the expansion of a activity schedule is complete, the Schedule Controller sends a message to
the Command Model object to constraint check the expanded command list. The Command Model
iterates through each command in the command list. Each command can have an optional con-
straint rule associated with it. Each rule is identified and the associated command is constraint
checked based on the rule. A CMS Status object is sent back to PAS which indicates if any con-
straints were violated. Load Generation is NOT invoked for a constraint checking only scenario.

3-36 305-CD-042-001

3.2.5 CMS Schedule Controller Data Dictionary

FmScScheduleController

class

FmScScheduleController
The main controller in the building of an ATC load from an activity list

Public Functions

EcTVoid MessageHandler()

Receives an activity list as input, decides what type of object it is, and distributes it to the proper operation

Private Functions

EcTVoid InitializeController()

Initializes the Schedule Controller

EcTVoid ProcessActivities(FoScActivityList)

Processes an incoming activity list from PAS

EcTVoid ProcessDeleteReq(EcTInt)

Processes an incoming delete load request from PAS

EcTVoid SendEventMessage(FoEvEvent)

Sends an event to the event handler

EcTVoid SendStatus(const FoMsCMSStatus)

Sends a ground script generation status to the FUI proxy

EcTVoid SendUplinkSchedReq(FmPcUplinkSchedReq)

Sends the a list of uplink schedule requests to PAS via the proxy

Private Data

RWSlistCollectables myDASidList

List of DAS ids

FoEvEvent* myEventPtr

Pointer to an event to be sent to the event handler

FmMsProcessSchedule

class FmMsProcessSchedule
Proxy for PAS to CMS Schedule Controller

Public Functions

FoMsCMSStatus ConstraintOverride(enum(y, n))

Sends the constraint override flag to the schedule controller

EcTInt DeleteLoads(EcTInt)

Deletes the load(s) for the associated input DAS id

EcTVoid ProcessActSchedule(FoScActivityList)

Calls operation to send the activity schedule to the schedule controller

3-37 305-CD-042-001

Private Functions

EcTInt Connect()

Makes the IPC connection to the schedule controller

EcTVoid Disconnect()

Disconnects the IPC connection from the schedule controller

EcTVoid SendActSched(FoScActivityList)

Sends the activity schedule to the schedule controller via IPC

EcTInt SendDeleteReq(EcTInt)

Sends a delete load request for a specified DAS to the schedule controller via IPC

FmScATCSchedule

class FmScATCSchedule
Responsible for coordinating the building of the ATC load

Base Classes

public FmScSchedule

Public Functions

RWSlistCollectables GenerateLoad(FmMnDirectiveList)

This operation that will coordinate the following for DAS processing:

- Partitioning of the load if necessary
- Creation of the load and load report
- Updating the load catalog
- Updating the buffer model
- Creating an uplink request

RWSlistCollectables GenerateLtChgLoad(const FmMnDirectiveList&, const
RWSlistCollectables)

This operation that will coordinate the following for Late change processing:

- Partitioning of the load if necessary
- Creation of the load and load report
- Updating the load catalog
- Updating the buffer model
- Creating an uplink request
- Removing entries from the load catalogs and their associated loads

Private Data

FOSTimeInterval myUplinkPeriod

Requested uplink period for the load

FmPcUplinkSchedReq

class FmPcUplinkSchedReq
Uplink request to be sent to PAS

Private Data

RWCString myLoadName

Is the name of the load generated

EcTInt myNumOfPartitions

Indicates the number of 4k partitions the load was broken into

3-38 305-CD-042-001

EcTInt mySizeOfLastPartition

Indicates the size of the last partition

EcTInt mySizeOfLoad

Indicates the size of the entire load

FOSTimeInterval myWindowInterval

Indicates the recommended uplink window

FmAcActivity

class FmAcActivity
Responsible for expanding an activity into a group of command based on the stored activity definition

Public Functions

RWDlistCollectables ExpandActivity(FoScActivity&)

This operation does the expansion of each activity

FmExProcedure

class FmExProcedure
responsible for the expansion of procedures

Public Functions

EcTInt ExpandProcedure(RWDlistcollectables)

Performs the expansion of a procedure and adds the commands to the DAS expanded command list

RWtime GetExecTime()

 Returns the value of MyExecTime

Private Data

RWTime MyExecTime

Time of the execute procedure command

RWString MyFilename

Filename of the procedure to be executed

FmExRTS

class FmExRTS
responsible for the expansion of an RTS

Public Functions

EcTInt ExpandRTS(RWDlistCollectables, RWDlistCollectables)

This operation expands the RTS into a set of space directives

3-39 305-CD-042-001

FmMnDirectiveList

class FmMnDirectiveList
List of FoEcDirectives

Base Classes

public RWDlistCollectables

Public Functions

EcTVoid CreateExpandedList(FoScActivityList)

Expands the list of activities into a list of directives

FoMsCMSStatus FindConstraints(void)

Calls the necessary operations to perform constraint checking on the expanded directive list

EcTVoid MergeWithList(const RWDlistCollectables)

Merges an input list into the directive list

Private Data

EcTInt myId

DASid that this command list was generated from

RWTime myStartTime

Start time of expanded command list

RWTime myStopTime

Stop time of expanded command list

FmScDAS

class FmScDAS

Base Classes

public FmMnDirectiveList

Public Types

class FmScDAS

A description of the class

Base Classes

public FmMnDirectiveList

Public Functions

FoMsCMSStatus FindConstraints(void)

Gets the buffer start time and the commands from the ground schedule then calls the base class operation to perform the
constraint checks

RWSlistCollectables GetPartitions(const RWTime)

Calls the spacecraft model proxy to get the number of partitions the directive list must be broken into in order to fit into
the spacecraft buffer

3-40 305-CD-042-001

FmScConstCk

class FmScConstCk
Directives to be constraint checked

Base Classes

public FmScCommandList

Public Functions

EcTVoid MergeWithFilter(const RWDlistCollectables)

Takes as input the expanded sorted command list and builds a filtered command list to be constraint checked

FoMsCMSStatus

class FoMsCMSStatus
 status for processing

Private Data

EcTInt myId

The id of this message.

RWCString myStatus

Pertinent information about the status object. Mostly used to explain why a process failed.

FoMsConflictInfo

class FoMsConflictInfo

Base Classes

public RWCollectable

Private Data

RWCString myCmdMnemonic

The mnemonic of this command.

RWCString myConflictingCmd

The mnemonic of the command with which this command conflicts.

RWTime myConstraintTime

The time at which the conflicting command is scheduled.

EcTInt myId

For a DAS, this will be an activity id. For RTS and procedures, this will be the line number of this command in the contents
file.

EcTInt mySoftHardFlag

An indicator specifying a hard or soft constraint.

RWCString myViolationInfo

Textual information concerning the violation.

3-41 305-CD-042-001

FmGsGroundData

class FmGsGroundData

Base Classes

public RWCollectable

Public Functions

EcTVoid DeleteDirectives(const RWSlistCollectables&)

Called by the Schedule Controller to delete certain directives from the Ground Schedule.

EcTVoid DeliverDirectives(const FmMnDirectiveList&)

Called by the Schedule Controller to put the directives from a DAS into the Ground Schedule.

FmMnDirectiveList ReturnCCList(const RWTime&, const RWSListCollectables&)

Called by the Schedule Controller to request a list of certain directives from the Ground Schedule.

Private Functions

EcTInt CreateConnection()

Creates a connection between this proxy and the Ground Schedule.

EcTVoid DestroyConnection()

Destroys the connection between this proxy and the Ground Schedule.

RWCollectable Receive()

Receives an object by IPC from the Ground Schedule.

EcTVoid Send(const RWCollectable&)

IPC's an object to the Ground Schedule.

FmMsStoreATCLoad

class FmMsStoreATCLoad
class definition - This class represents an interface between the ATC Schedule and the Load Catalog. It uses IPC to relay in-
formation between this class and the Load Catalog. ATC Schedule sends information to this class via function calls.

Public Functions

EcTInt CheckForLoad(EcTInt)

Called by ATC Schedule to send a DAS Id to the Load Catalog and get back an integer status, indicating that the load
associated with this DAS Id has or has not been uplinked.

EcTInt CreateConnection()

Creates the two-way connection between this proxy and FmLdLoadCatalog.

EcTInt DeleteLoads(const RWSlistCollectables&)

Called by ATC Schedule to delete all loads on the input list. Returns a response.

EcTVoid DestroyConnection()

Destroys the connection between this proxy and FmLdLoadCatalog.

EcTInt Receive()

Receives an FoMsCMSStatus object from FmLdLoadCatalog via IPC and returns it.

EcTVoid Send(const RWCollectable&)

Sends an object to FmLdLoadCatalog via IPC.

3-42 305-CD-042-001

EcTInt StoreLoad(const FoLiATCLoad&)

Called by ATC Schedule to send a load for storage. Returns a response.

FmMsValidateConstraints

class FmMsValidateConstraints
This class represents the interface proxy class between CMS internal subsystems and the FmCcCommandModel class. FmC-
cCommandModel manages the command rule-based constraint checking.

Public Functions

EcTInt CreateConnection(void)

Establishes a connection with FmCcCommandModel to receive constraint checking request from the schedule controller
and the load catalog

EcTVoid DestroyConnection(void)

Destroys the connection with FmCcCommandModel

FoMsCMSStatus& Receive(void)

Receives the results of rule-base command constraint checking, FoMsCMSStatus

FoMsCMSStatus& Send(const RWCollectable&)

Sends either a FmScConstCk command list from the schedule controller or a FoEcDirective list created from an RTS load
contents file to the FmCcCommandModel for rule-base command constraint checking

FoMsCMSStatus& ValidateCommands(const FmScConstCk&)

FmScScheduleController invokes this function to send the DAS scheduled command list to be command rule-based con-
straint checked

FoMsCMSStatus& ValidateRTS(const RWCString&, const RWCString&)

FmLdLoadCatalog invokes this function to send the directory name and load name from the generate RTS load request
to be command rule-based constraint checked. This function creates the FoCcDirectiveList to the FmCcCommandModel.

FmSmMapBuffer

class FmSmMapBuffer
This class represents the interface proxy class between CMS internal subsystems and the FmSmSpacecraft class. FmSmSpace-
craft manages the buffer modeling for ATC, RTS and table buffers and the ground

imaging.

Public Functions

EcTInt CreateConnection(EcTVoid)

Establishes a connection with FmSmSpacecraft to receive requests from the schedule controller and the load catalog

EcTVoid DeleteBuffers(const RWSlistCollectables&)

Request received from load catalog when a late change as been successfully processed. The predicted buffer models as-
sociated with all of the generated loads are deleted. Instantiates an FmMsDeleteATCBuffers object.

EcTVoid Destroy(EcTVoid)

Destroys the connection with FmCcCommandModel

FmMsATCBufferInfo GetATCBufStartTime(const FoEcTime&)

Requests the start time of the 1st command in the buffer that will be used to model the newly received DAS or late change
request

RWSlistCollectables& MapATC(const FmMnDirectiveList&, const FOSTimeInter-
val&, const FoEcTime&, const EcTInt&)

3-43 305-CD-042-001

Request FmSmSpacecraft to map the command list into an ATC buffer model. Instantiates an FmMsATCMapRequest
object to be sent to FmSmSpacecraft.

RWSlistCollectables& MapLateChange(const FmMnDirectiveList&, const FOS-
TimeInterval&, const FoEcTime&, const EcTInt&)

Requests FmSmSpacecraft to map the late change command list into the correct buffer model. Instantiates an FmMsATC-
MapRequest object to be sent to FmSmSpacecraft.

RWSlistCollectables& Receive(EcTVoid)

Receives the response from FmSmSpacecraftModel It receives either A list of FmMsLoadData objects or a
FmMsATCBufferInfo object

EcTVoid Send(const RWCollectable&)

Sends messages to FmSmSpacecraftModel. Sends FmMsATCMapRequest, FmMsDeleteATCBuffers, or FmMsUpdate-
Buffer.

EcTVoid UpdateBuffer(const FmMsUpdateBuffer&)

Request the buffer be updated to a new status

FmMsLoadData

class FmMsLoadData
This class is sent to CMS Schedule controller. From this class the ATC load directives are used to create the ATC binary uplink
load. If the DAS needs to be partitioned multiple FmMsLoadData objects are returned to CMS Schedule Controller.

Private Data

EcTInt myDirListAddr

This is the next directive in the processing list. If the list is completely processed the is set to NULL. If the list requires
further processing, that is the DAS/ ATC load need to be partitioned, it is set to the next directive in the list. This is where
the partitioned load needs to begin.

FmMnDirectiveList myDirectiveList

This is the portion of the DAS/ATC directive list being currently processed that will be used to create the ATC binary
uplink load It may be all of the DAS or part of the DAS if the ATC buffer cannot hold all of the commands - that is the
DAS is being partitioned

RWCString myLoadName

This is the load name create by ATC buffer model

FOSTimeInterval myUplinkWindow

This is the uplink window for the ATC uplink directive list

FoLiATCLoad

class FoLiATCLoad
class definition

Base Classes

public FoLiLoad

Public Functions

EcTInt BuildUplinkLoad()

Builds the uplinkable load and the load report.

EcTInt ComposeReport()

Fills in the attributes of the report and stores it.

3-44 305-CD-042-001

FoMsCMSStatus& CreateLoad(const FmMnDirectiveList&)

Populates the load object and its aggregate parts.

Private Data

FmMnDirectiveList myCriticalCommands

The critical commands in the load.

EcTInt myCriticalFlag

An indicator of critical commands existing in the load.

EcTInt myDASId

The DAS id for which the load is generated.

FmMnDirectiveList myDirectiveList

The entire list of directives that constitute the load.

FoLiATCLoadReport* myLoadReport

A pointer to the load report for this load.

FoLiATCLoadReport

class FoLiATCLoadReport
class definition

Base Classes

public FoLiLoadReport

Private Data

FmMnDirectiveList myCommandList

The entire list of commands which constitute the load.

FmMnDirectiveList myControlCommands

The control commands contained in the load.

RWTime myStartTime

The time of the first command in the load.

RWTime myStopTime

the time of the last command in the load.

FoLiLoad

class FoLiLoad

Base Classes

public RWCollectable

Public Functions

virtual EcTInt BuildUplinkLoad(const FoLiLoadImage&)

Builds the uplinkable load and the load report.

FoMsCMSStatus& CreateLoad(const FoMsLoadGenReq&)

Reads in the file from the request and creates the load.

3-45 305-CD-042-001

EcTInt GenerateLoadImage(const FoLiLoadContents&)

Generates the binary for the load and stores it in a file.

Private Data

RWCString myDestination

The destination on the spacecraft for the load.

RWCString myDirectory

The directory where the load contents file from which the load is generated exists.

FoLiLoadContents myLoadContents

The load contents object.

RWCString myLoadName

The name of the load.

EcTInt myLoadSize

The size of the load in bytes.

EcTInt myNumberOfPieces

The number of uplink loads for this load.

RWCString myOwner

The id of the owner of the load.

EcTInt mySizeOfLastPiece

The number of bytes of the last uplinkable load.

EcTInt mySpacecraftId

The id of the spacecraft for which the load is valid.

FoMsCMSStatus myStatus

The processing status of the load.

RWSlistCollectables myUplinkLoads

The uplinkable portions of the load.

FOSTimeInterval myUplinkPeriod

The uplink period of the load.

FoLiLoadReport

class FoLiLoadReport
class definition

Base Classes

public FoDsFile

Private Data

EcTInt myEndLocation

The last memory location used by the load.

RWCString myLoadName

The name of the load for which this report was written.

EcTInt mySize

The size of the load in bytes.

3-46 305-CD-042-001

EcTInt myStartLocation

The first memory location used by the load.

RWCString myType

the type of the load for which this report was written.

FOSTimeInterval myUplinkPeriod

The uplink window of the load for which this report was written.

FoLiUplinkLoad

class FoLiUplinkLoad
class definition

Base Classes

public FoDsFile

Public Functions

EcTInt BuildLoad(const FoLiLoadImage&)

Generates the CRC for the load, puts the load into packets, and stores the load with DMS.

EcTInt* BuildLoadData()

Sets the command destination information and fills in the command data.

EcTInt* CCSDSWrap()

Generates the packets for the load.

FoScActivity

class FoScActivity
Defines one activity in the Activity List

Private Data

RWString myActDefName

Name of the Activity to be expanded

EcTInt myActId

Activity ID

RWSlistCollectables myParamValueList

Parameter values to be substituted into the appropriate commands

RWTime myStartTime

Start time of the Activity

RWTime myStopTime

Stop time of the Activity

FoScActivityList

class FoScActivityList
Activity List class received from PAS

3-47 305-CD-042-001

Private Data

EcTInt myId

Activity list ID (DASid)

FoScDetActSched

class FoScDetActSched
Defines a Detailed Activity Schedule (DAS)

Base Classes

public FoScActivityList

Protected Data

RWSlistCollectables myOrbitalEvent

List of orbital events associated with the input activity list

RWTime myStartTime

Start time of the Activity List

RWTime myStopTime

Stop time of the Activity List

FOSTimeInterval myUplinkWindowReq

Requested uplink window for the load to be generated from the Activity List

RWString myVersion

Version number

FoScLateChange

class FoScLateChange
Defines a Late Change Activity List

Base Classes

public FoScDetActSched

Private Data

RWTime myStartTime

Start time of the Late Change Activity List

FoScOrbitalEvents

class FoScOrbitalEvents
Defines each orbital event associated with a DAS

Private Data

RWString myName

Name of the orbital event

RWTime myTime

Time of the orbital event

3-48 305-CD-042-001

FoScSimulationSched

class FoScSimulationSched
Defines a simulation Activity List

Base Classes

public FoScActivityList

Private Data

EcTInt myATCBufferStart

ATC buffer start time to be used when partitioning the load

RWTime myStartTime

Start time of the simulation Activity List

RWTime myStopTime

Stop Time of the Activity List

RWString myVersion

Version number of the Activity List

FoScUplinkActivity

class FoScUplinkActivity
stp/omt class definition 3290603

Base Classes

public FoScActivity

Protected Data

RWString myLoadName

Load name for the associated uplink request activity list

FoEcComment

class FoEcComment
Defines a comment directive

Base Classes

public FoEcGroundDirective

Private Data

RWCString myKeyword

Keyword indicating directive is a comment

FoEcDeltaTime

class FoEcDeltaTime
Defines Delta time

Base Classes

public FoEcTime

Delta Time

3-49 305-CD-042-001

Private Data

EcTChar myPlusMinusSign

Indicates whether the delta time is positive or negative. Used for computing absolute time.

EcTChar myStartStopIndicator

Indicates whether the delta time is associated with the start or stop time of the activity

FoEcDirective

class FoEcDirective
Defines an individual directive

Public Functions

void CheckSyntax(EcTInt errcode)

Checks to ensure the syntax of the directive is valid

void Execute(void)

void LogDirective(void)

Logs the directive

void Parse(void)

Parses the directive

void UpdateStatus(void)

updates the status of the directive

Private Data

EcTInt myActivityId

Id of the activity that this directive was expanded from

EcTInt myDASId

id of the DAS that this directive was expanded from

FuTdDataSource* myDataSourceId

id of the originator of the directive

RWCString myDirectiveText

text describing this directive

FuGsGroundScriptControl* myGndScript

ground script for the associated directive

EcTInt myLineNum

line number from the associated expansion

RWSlistCollectables myParameters

list of parameters associated with this directive

FoClProcedure* myProc

indicates which procedure this directive was expanded from

FuClProcControlWin* myProcControl

enum myProcFlag

indicates whether this directive was expanded from a procedure

3-50 305-CD-042-001

enum mySource

source of the directive

EcTInt myStatus

status of the directive

Private Types

enum

Enumerators

gs
manual
proc

enum

Enumerators

n
y

FoEcGroundDirective

class FoEcGroundDirective
Defines an individual ground directive

Base Classes

public FoEcDirective

Private Data

RWCString myKeyword

Defines the keyword for the ground directive

FoEcLabel

class FoEcLabel

Base Classes

public FoEcGroundDirective

Private Data

RWCString myName

Name of the label associated with the ground directive

EcTInt myOffset

FoEcRTCommand

class FoEcRTCommand
Defines a real time command directive

3-51 305-CD-042-001

Base Classes

public FoEcGroundDirective

Private Data

RWBitVec myBinary

Binary data associated with the real time command

RWCString myMnemonic

Mnemonic which defines the real time command

FoEcSpaceDirective

class FoEcSpaceDirective
Defines a spacecraft directive

Base Classes

public FoEcDirective

Public Functions

EcTInt FigureBinary()

Generates the binary representation of this directive.

Private Data

RWBitVec myBinary

The binary representation of this directive, the format of which is described by the ICD.

EcTInt myInhibitId

The group id indicating what resource this directive could have an effect on.

RWCString myMnemonic

The mnemonic for the directive.

EcTInt myRTSFlag

An indicator specifying if this directive is part of an RTS or not.

FoEcSpaceTime

class FoEcSpaceTime
class definition

Base Classes

public FoEcTime

Public Functions

EcTFloat GetConversionFactor()

Returns the conversion factor.

EcTVoid SetConversionFactor(EcTFloat)

Sets the conversion factor to the input value.

Private Data

EcTFloat myConversionFactor

The numeric factor which converts actual seconds to spacecraft seconds.

3-52 305-CD-042-001

FoEcTime

class FoEcTime
class definition

Base Classes

public RWTime

Public Functions

RWTime& GetEpoch()

Returns the epoch.

EcTVoid SetEpoch(const RWTime&)

Sets the epoch to the input time.

Private Data

RWTime myEpoch

The epoch upon which the time is based. Time is computed as the number of seconds since the epoch. The default epoch
for RWTime is Jan. 1, 1901 at 00:00:00.

3-53 305-CD-042-001

3.3 Ground Schedule
The Ground Schedule is a persistent process that runs on the FOS Data Server. It maintains a
continuous schedule of ECL directives, including planned real-time commands, ground
configuration directives, and comments representing spacecraft stored commands and orbital
events. Lists of directives to be added to the continuous schedule are sent to Ground Schedule by
Schedule Controller. In response to a late change request from PAS, Schedule Controller may also
request the deletion of directives with a particular DAS id from the continuous schedule.

Ground Schedule uses its continuous list of directives to generate responses to various requests. In
response to a constraint check list request, Ground Schedule provides a list of directives for a spec-
ified time range to Schedule Controller. In response to a ground script request from FUI, Ground
Schedule generates a ground script, which is a time ordered list of directives, for the requested time
range and stores it with DMS. In response to an expected state request, Ground Schedule generates
an expected state table for a specified time and returns it to telemetry. An expected state table is
based on scheduled stored and real-time commands and consists of a list of telemetry parameter
ids and their predicted values.

Ground Schedule is also responsible for generating the integrated report. This report is generated
automatically whenever a DAS is processed and includes all scheduled ECL directives and orbital
events for the time span of the previous Detailed Activity Schedule.

3.3.1 Ground Schedule Context

Figure 3.3-1 shows the context diagram for the Ground Schedule. The Ground Schedule has four
interfaces.

CMS Schedule Controller

• Ground Schedule receives a directive list to be merged into the existing schedule.

• Ground Schedule receives a request to delete certain directives from the schedule.

• Ground Schedule receives a request to return a list of certain types of directives.

• Ground Schedule sends a directive list in response to a list request.

DMS

• Ground Schedule receives the Command Execution Verification (CEV) definitions
upon initialization.

3-54
305-C

D
-042-001

CMS
Ground Schedule

CMS
Schedule
Controller

User
Interface

Telemetry

Data
Management

This System

Directives,
Delete Request,

Directive List Request

Directive List

Ground Script Request

Ground Script
Generation Status

Expected State Table

Expected State Table
Request

Directives,
Expected State Table,

Ground Script,
Integrated Report

CEV Definitions,
Directives,

Expected State Table

Figure 3.3-1. Ground Schedule Context Diagram

3-55 305-CD-042-001

• Ground Schedule receives its schedule of directives in a file upon initialization.

• Ground Schedule receives an Expected State Table file upon initialization.

• Ground Schedule stores its schedule of directives upon a schedule change (addition or
deletion).

• Ground Schedule stores an Expected State Table whenever one is generated.

• Ground Schedule stores a Ground Script whenever one is generated.

• Ground Schedule stores an Integrated Report whenever one is generated.

Telemetry

• Ground Schedule receives a request to generate an Expected State Table.

• Ground Schedule sends an Expected State Table when one is generated upon request.

FUI

• Ground Schedule receives a request to generate a Ground Script.

• Ground Schedule sends a status indicating the storage location of the Ground Script.

3-56 305-CD-042-001

3.3.2 Ground Schedule Interfaces
Table 3.3.2. Ground Schedule Interfaces

Interface
Service

Interface Class Interface Class
Description

Service
Provider

Service
User

Frequency

Delete
Directives

FmGsGroundData Proxy between
CMS:Schedule Controller
and CMS: Ground Schedule.
Requests deletion of
directives from the Ground
Schedule

CMS:
Ground
Schedule

CMS:
Schedule
Controller

1/month

Add
Directives

FmGsGroundData Proxy between
CMS:Schedule Controller
and CMS: Ground Schedule.

CMS:
Ground
Schedule

CMS:
Schedule
Controller

1/day

FmMnDirectiveList List of directives to add to the
Ground Schedule.

Return
Directive
List

FmGsGroundData Proxy between
CMS:Schedule Controller
and CMS: Ground Schedule.

CMS:
Ground
Schedule

CMS:
Schedule
Controller

1/day

FmGsListRequest Contains list of DAS id's and a
time. All directives in the
Ground Schedule that occur
after the time and that have
DAS Id's that are in the list will
be returned.

FmMnDirectiveList List of directives.

Generate
Ground
Script

FmMsGenerateOpAi
ds

Proxy between CMS:Ground
Schedule and FUI

CMS:
Ground
Schedule

FUI:
Ground
Script
Controller

3/day

FoMsGsGenReq Request for Ground Script to
be created for given times.

FoGsStatus Results of Ground Script
Generation.

Generate
Expected
State Table

FmMsExpectedState
Table

Proxy between Ground
Schedule and TLM.

CMS:
Ground
Schedule

TLM:
FtTlSCStat
eCheck

1/contact

FoMsTableRequest Request that a table be
generated for a given time.

FoTlExpectedState List of FoTlExpectedValue
objects.

FoTlExpectedValue Expected value for a
particular parameter id.

3-57 305-CD-042-001

3.3.3 Ground Schedule Object Model

Figure 3.3-2 shows the first page of the object model for the Ground Schedule. Ground Schedule
is an independent process which maintains the scheduled directives. Figure 3.3-3 shows the class
FmMnDirectiveList and the entire FoEcDirective structure. FmScGroundSchedule is responsible
for adding directives to and deleting directives from its list and for generating the Ground Script,
Expected State Table, and Integrated Report based on the directive list. It has four interfaces that
are used to allow other process access to the schedule. FmScGroundSchedule generates an
FoGsGroundScript, which is derived from FoDsFile. Figure 3.3-4 shows the classes which are
derived from FoDsFile. FoGsCEVTable is generated by the Ground Schedule upon initialization
using information obtained from DMS. The CEV Table contains many FoGsCEVDataField
objects. Each Data Field contains information about one CEV pid. The CEV Table is used to
generated an Expected State Table.

FoTlExpectedState is the Expected State Table generated using the CEV Table.
FoTlExpectedState consists of one to many FoTlExpectedValue objects, each of which contain
information about one parameter id. The FoTlExpectedState is updated based on a
FoMsTableRequest received from the proxy FmMsExpectedStateTable. This proxy is how TLM
requests the Ground Schedule to generate an Expected State Table for a certain time.

FoRpIntegratedReport is a file object that is generated whenever an expanded Detailed Activity
Schedule is received from the Schedule Controller through the proxy FmGsGroundData. This
proxy also sends a FmGsListRequest to the Ground Schedule, requesting a portion of the schedule
be returned to the Schedule Controller.

The class FmMsGenerateOpAids is an interface proxy with FUI. It receives a FoMsGsGenReq
object from FUI, which is used to request that a Ground Script covering a certain period of time be
generated. Ground Schedule sends to the proxy a FoGsStatus, indicating the storage location of the
Ground Script and a brief status message.

3.3.4 Ground Schedule Dynamic Model

The Ground Schedule dynamic model consists of the following scenarios:

• Ground Schedule Initialization

• Expected State Table Generation

3-58
305-C

D
-042-001

FmScGroundSchedule

FoGsGroundScript

FoRpIntegratedReport

FoTlExpectedState

FoGsCEVTable

myDirectives
mySpacecraftId
myStartTime
myStopTime

myDirectiveList

FoMsGsGenReq

myDirectory
myFilename
myProcExpFlag
myScId
myStartTime
myStopTime

myCEVdata

LookUp(const RWCString&)

FoGsCEVDataField

myCEVpid
myCmdMnemonic
myHighValue
myLowValue

FoTlExpectedValue

myLowValue
myHighValue

myPID

FmMsGenerateOpAids

CreateConnection()
DestroyConnection()
GenerateGndScript(const FoMsGsGenReq&)
Receive()
Send(const FoMsGsGenReq&)

FoGsStatus

myDirectory
myFilename
myStatus

FmMsExpectedStateTable

FoMsTableRequest

CMS proxy
with TLM

myCEVTable
myData
myTime

Compare(const FoPsClientBuffer&)

Replace(const FoPsClientBuffer&)
UpdateTable(const RWDlistCollectables&)

myTime

CreateConnection()
DestroyConnection()
FetchTable()
Receive()
Send(const FoMsTableRequest&)

myCEVTable
myEventPtr

mySchedule
myExpectedState

CreateEST(const RWTime&)
CreateGroundScript(const FoMsGsGenReq&)
CreateIntegratedReport()
DeleteDirectives(const RWSlistCollectables&)
HandleMessage()
Initialize()
ProcessDAS(const FmScDAS&)
ProcessOrbitalEvents(const RWSlistCollectables&)
ProcessUplinkSched(const FmScUplinkSched&)
ReturnCCList(const FmGsListRequest&)

FmGsGroundData

DeliverDirectives(const FmMnDirectiveList&)

ReturnCCList(const RWTime&, const RWSListCollectables&)

DeleteDirectives(const RWSlistCollectables&)

Receive()

Send(const RWCollectable&)

DestroyConnection()

CreateConnection()

FmGsListRequest

myTime
myDASList

CMS proxy
with FUI

CMS proxy with Schedule Controller

GetPids()

FmMnDirectiveList

CONTINUED

{shared - FUI,FMN,FDM}

 - : FmMnDirectiveList
 - : RWCString
 - : RWTime
 - : RWTime

 - : FmMnDirectiveList

 - : RWCString
 - : RWCString
 - : EcTInt
 - : RWCString
 - : EcTLongInt
 - : EcTLongInt

 - : RWSlistCollectables

 + : FoGsCEVDataField&

 - : EcTInt
 - : RWCString
 - : EcTInt
 - : EcTInt

 - : EcTInt
 - : EcTInt

 - : EcTInt

 - : EcTInt
 - : EcTVoid
 + : FoGsStatus
 - : FoGsStatus
 - : EcTVoid

 - : RWCString
 - : RWCString
 - : EcTInt

 - : FoGsCEVTable*
 - : RWSlistCollectables
 - : RWTime

 + : EcTVoid

 + : EcTInt
 + : EcTInt

 - : RWTime = now

 - : EcTInt
 - : EcTVoid
 + : FoTlExpectedState&
 - : FoTlExpectedState
 - : EcTVoid

 - : FoGsCEVTable
 - : FoEvEvent *

 - : FmMnDirectiveList
 - : FoTlExpectedState

 + : FoTlExpectedState&
 + : FoGsStatus
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : FmMnDirectiveList

 + : EcTVoid

 + : FmMnDirectiveList

 + : EcTVoid

 - : RWCollectable

 - : EcTVoid

 - : EcTVoid

 - : EcTInt

 - : RWTime
 - : RWSlistCollectables

 + : RWSlistCollectables

generates

communicates with

sends to
Ground Scheduleis sent from

Ground Schedule

communicates
with

creates and
sends

1+

1+

creates from file

sends
to

Ground
Schedule

is created by

communicates
with

sends to
Ground

Schedule

Figure 3.3-2. Ground Schedule Object Model - page 1

3-59
305-C

D
-042-001

FoEcSpaceDirectiveFoEcGroundDirective

FoEcComment

FoEcProcedureCall

FoEcRTCommand

FoEcUplinkCommand

FoEcLogicalExp

myOperator

Evaluate(FuClLiteral value1, FuClLiteral value2)
Evaluate(FuClLiteral value1)

FoEcTime

FoEcDeltaTime

FoEcAbsoluteTime

FoEcSpaceTime

FoEcOrbitalEventDirective

FoEcDirective

FoEcLabel FoEcWait

FoEcElseFoEcElseIf

FoEcEndIfFoEcEndProc

FoEcExecRTS

myKeywordmyPlusMinusSign
myStartStopIndicator

myName
myOffset

Jump()

myKeywordmyBinary
myMnemonic

myBinary

myInhibitId
myMnemonic
myRTSFlag

myEpoch

myConversionFactor

FigureBinary()

setBit(unsigned int)
testBit(unsigned int)
indexRangeErr(unsigned int)

myCriticalFlag

FoScActivityInfo

myActivityId
myNumberSpaceCommands

FoEcParameter

myMnemonic
myValuemyActivityId

myConstraints
myDASId
myDataSourceId
myDirectiveText
myGndScript
myLineNum
myParameters
myProc
myProcControl
myProcFlag
mySource
myStatus

CheckSyntax(EcTInt errcode)
Execute()
LogDirective()
Parse()
UpdateStatus()

FmMnDirectiveList

myId
myStartTime
myStopTime

FmMnDirectiveList(FpCrActivityList)
CreateExpandedList(FpCrActivityList)
FindConstraints()
MergeWithList(const RWDlistCollectables)

 - : EcTInt

 + : EcTInt
 + : EcTInt

 - : RWCString - : EcTChar
 - : EcTChar

 - : RWCString
 - : EcTInt

 + : EcTVoid

 - : RWCString - : RWBitVec
 - : RWCString

 - : RWBitVec

 - : EcTInt
 - : RWCString
 - : EcTInt

 - : RWTime

 - : EcTFloat = 1.024

 + : EcTVoid
 + : EcTInt
 + : EcTInt

 - : EcTInt

 - : EcTInt
 - : EcTInt

 -
 - - : EcTInt

 - : RWSlistCollectables
 - : EcTInt
 - : FuTdDataSource* = NULL
 - : RWCString
 - : FuGsGroundScriptControl*
 - : EcTInt
 - : RWSlistCollectables
 - : FoClProcedure*
 - : FuClProcControlWin*
 - : enum {y,n}
 - : enum{manual,proc,gs}
 - : EcTInt

 +
 +
 +
 +
 +

 - : EcTInt
 - : RWTime
 - : RWTime

 + : EcTVoid
 + : EcTVoid
 + : FoMsCMSStatus
 +

Figure 3.3-3. Ground Schedule Object Model - page 2 - Directives

3-60
305-C

D
-042-001

FoDsFile

FoGsGroundScript
FoRpIntegratedReport

myDirectiveListmySpacecraftId
myStartTime
myStopTime

myDirectives

myPath
myFilename

Close(fileptr)
Open(file,path,action)
Read(fileptr,recptr,size)
Write(fileptr,recptr,size)

{shared - FDM with all S/S}

{shared - FUI,FMN,FDM}

 - : FmMnDirectiveList - : RWCString
 - : RWTime
 - : RWTime

 - : FmMnDirectiveList

 - : RWCString
 - : RWCString

 + : EctInt
 + : fileptr
 + : EctInt
 + : EctInt

Figure 3.3-4 . Ground Schedule Object Model - Files

3-61 305-CD-042-001

• DAS Processing

• Ground Script Generation

3.3.4.1 Ground Schedule Initialization Scenario

3.3.4.1.1 Ground Schedule Initialization Abstract

The Initialization Scenario describes how the Ground Schedule process is initialized. The Ground
Schedule ingests the information it needs from DMS.

3.3.4.1.2 Ground Schedule Initialization Summary Information

Interfaces:

• DMS

Stimulus:

• Ground Schedule process is started.

Desired Response:

• Schedule is restored from DMS

• Expected State Table is restored from DMS

• CEV Table is restored from DMS

Pre-Conditions:

• DMS is accessible

Post-Conditions:

• Ground Schedule is ready to process requests.

3.3.4.1.3 Ground Schedule Initialization Description

Figure 3.3-5 shows the Ground Schedule Initialization event trace. When the initialize function is
called, Ground Schedule requests from DMS the data file containing the schedule. The data file is
returned, and Ground Schedule recreates its schedule from the information in the file. Ground
Schedule requests from DMS the data file containing the CEV Table. The data file is returned, and
Ground Schedule creates its CEV Table from the information in the file. Ground Schedule requests
from DMS the data file containing the Expected State Table. The data file is returned, and Ground
Schedule creates its Expected State from the information in the file.

3-62
305-C

D
-042-001

FmScGroundSchedule DMSFoGsCEVTable FoTlExpectedState FmMnDirectiveList FoDsFileAccessor

requests directive file
retrieves

directive file

returns
directive file

returns directive file

populates from directive file

requests CEV definitions file
retrieves CEV
definitions file

returns CEV
definitions file

returns CEV definitions file

populates from
CEV file

requests Expected State Table file

retrieves EST
file

returns EST
file

returns Expected State Table file

populates from EST file

Figure 3.3-5. Ground Schedule Initialization Event Trace

3-63 305-CD-042-001

3.3.4.2 Expanded DAS Processing Scenario

3.3.4.2.1 Expanded DAS Processing Abstract

The Expanded DAS processing scenario describes how a Detailed Activity Schedule is processed
in the Ground Schedule when one is received from the Schedule Controller.

3.3.4.2.2 Expanded DAS Processing Summary Information

Interfaces:

• Schedule Controller

• DMS

Stimulus:

• Receipt of a directive list from Schedule Controller

Desired Response:

• Directives merged into existing schedule

• Integrated Report generated and stored with DMS

Pre-Conditions:

• Ground Schedule software has been initialized

Post-Conditions:

• Schedule checkpointed with DMS

• The Ground Schedule's most recent Expected State Table is updated

3.3.4.2.3 Expanded DAS Processing Description

Figure 3.3-6 shows the Expanded DAS Processing Event Trace. The Ground Schedule receives a
directive list from the internal interface proxy FmGsGroundData. This is a proxy with Schedule
Controller. The Ground Schedule adds the directives in the directive list to its existing schedule. It
then generates an Integrated Report for the previous DAS received and stores it with DMS. Ground
Schedule creates an Expected State Table based on the current time and stores it with DMS.
Finally, the Ground Schedule stores its schedule with DMS.

3.3.4.3 Delete from Schedule Scenario

3.3.4.3. Delete from Schedule Abstract

The Delete from Schedule scenario describes how directives are deleted from the Ground Sched-
ule. Directives need to be deleted whenever a Late Change Detailed Activity Schedule is received
from Planning and Scheduling.

3-64
305-C

D
-042-001

FmScScheduleController

FmGsGroundData

{CMS proxy with
Ground Schedule}

FmScGroundSchedule

FoRpIntegratedReport

FoTlExpectedStateTable DMS

FoTlExpectedValue

calls
DeliverDirectives()

sends directives

adds
directives

to
schedule

creates

sends directives

updates

returns success status

stores Integrated Report

stores Expected State Table

stores schedule

for each
directive

Figure 3.3-6. Expanded DAS Processing Event Trace

3-65 305-CD-042-001

3.3.4.3.2 Delete from Schedule Summary Information

Interfaces:

• Schedule Controller

Stimulus:

• Receipt of a delete request from the Schedule Controller

Desired Response:

• Directives specified in request deleted from Ground Schedule

Pre-Conditions:

• Ground Schedule software is initialized

• Ground Schedule is populated with directives

Post-Conditions:

• Schedule is checkpointed to DMS

3.3.4.3.3 Delete from Schedule Description

Figure 3.3-7 shows the Delete from Schedule event trace. A delete request is received from Sched-
ule controller through the proxy FmMsGroundData. Ground Schedule determines which directives
should be deleted based on the DAS Id's in the request. All directives having a DAS Id which is
listed in the request are deleted. Ground Schedule stores the schedule with DMS as a checkpoint
file.

3.3.4.4 Expected State Table Generation Scenario

3.3.4.4.1 Expected State Table Generation Abstract

The Expected State Table Generation scenario describes the generation of an Expected State Table
upon request from the Telemetry subsystem.

3.3.4.4.2 Expected State Table Generation Summary Information

Interfaces:

• TLM

• DMS

Stimulus:

• Receipt of a FoMsTableRequest from TLM

Desired Response:

3-66
305-C

D
-042-001

FmScScheduleController

FmMsGroundData

FmScGroundSchedule

DMS

{CMS internal proxy}

request deletion

sends delete
request via IPC

delete
directives

store
schedule

Figure 3.3-7. Delete from Schedule Event Trace

3-67 305-CD-042-001

• Expected State Table sent to TLM

Pre-Conditions:

• Ground Schedule software has been initialized
• The schedule has been populated with directives
• A previously generated Expected State Table exists

Post-Conditions:

• The Ground Schedule's most recent Expected State Table has been updated

3.3.4.4.3 Expected State Table Generation Scenario Description

Figure 3.3-8 shows the Expected State Table Generation Event Trace. The Ground Schedule
receives a FoMsTableRequest from the interface proxy class FmMsExpectedStateTable. Ground
Schedule uses the time in the request to create an FoTlExpectedState object based on a previously
generated table. Ground Schedule determines which directives from its schedule will effect the
table and passes them to the FoTlExpectedState. For each directive passed in, FoTlExpectedState
looks up the command mnemonic in its CEV Table and updates the appropriate
FoTlExpectedValue. When all of the directives have been looked up, Ground Schedule sends the
Expected State table to the interface proxy. Finally, Ground Schedule stores the Expected State
table with DMS.

3.3.4.5 Ground Script Generation Scenario

3.3.4.5.1 Ground Script Generation Abstract

The Ground Script Generation scenario describes the generation of a Ground Script based on a
request sent to the Ground Schedule from FUI.

3.3.4.5.2 Ground Script Generation Summary Information

Interfaces:

• FUI
• DMS

Stimulus:

• Receipt of an FoMsGsGenReq from FUI

Desired Response:

• Ground Script generated and stored with DMS
• FoGsStatus sent back to FUI

3-68
305-C

D
-042-001

TLM FmMsExpectedStateTable FmScGroundSchedule FoTlExpectedState FoTlExpectedValue DMS

{CMS proxy with TLM}

calls FetchTable()

sends Table Request

creates/
sends directives

updatesfor
each

directive

returns success status

sends Expected
State Table

returns Expected
State Table

saves Expected State Table

Figure 3.3-8. Expected State Table Generation Event Trace

3-69 305-CD-042-001

Pre-Conditions:

• Ground Schedule software has been initialized

• Schedule has been populated with directives

Post-Conditions:

• none

3.3.4.5.3 Ground Script Generation Description

Figure 3.3-9 shows the Ground Script Generation Event Trace. The Ground Schedule receives an
FoMsGsGenReq from the proxy FmMsGenerateOpAids. The Ground Schedule uses the informa-
tion in the request to determine which directives from the schedule should be copied into a Ground
Script. The Ground Script is created with these directives and stored with DMS. Ground Schedule
creates an FoGsStatus object and indicates in it information pertaining to the generation. The
FoGsStatus is returned to the proxy, which returns it to FUI.

3-70 305-CD-042-001

3.3.5 Ground Schedule Data Dictionary

FmGsGroundData

class FmGsGroundData

Base Classes

public RWCollectable

Public Functions

EcTVoid DeleteDirectives(const RWSlistCollectables&)

Called by the Schedule Controller to delete certain directives from the Ground Schedule.

EcTVoid DeliverDirectives(const FmMnDirectiveList&)

Called by the Schedule Controller to put the directives from a DAS into the Ground Schedule.

FmMnDirectiveList ReturnCCList(const RWTime&, const RWSListCollectables&)

Called by the Schedule Controller to request a list of certain directives from the Ground Schedule.

Private Functions

EcTInt CreateConnection()

Creates a connection between this proxy and the Ground Schedule.

EcTVoid DestroyConnection()

Destroys the connection between this proxy and the Ground Schedule.

RWCollectable Receive()

Receives an object by ipc from the Ground Schedule.

EcTVoid Send(const RWCollectable&)

Ipc's an object to the Ground Schedule.

3-71
305-C

D
-042-001

User
Interface FmMsGenerateOpAids

{CMS proxy with FUI}

FmScGroundSchedule FoGsGroundScript DMSFoMsGsGenReq FoGsStatus

sends Ground Script
Request

creates

sends directives

stores Ground Script

creates

sends Ground Script Request

creates

sends Status

returns status

Figure 3.3-9. Ground Script Generation Event Trace

3-72 305-CD-042-001

FmGsListRequest

class FmGsListRequest
This class represents the criteria for specifying which directives should be returned from the Ground Schedule. Only those
directives having a DAS Id in myDASList and an execution time after myTime will be returned.

Base Classes

public RWCollectable

Private Data

RWSlistCollectables myDASList

A list of DAS id's.

RWTime myTime

The time for specifying which directives should be returned.

FmMsExpectedStateTable

class FmMsExpectedStateTable

Base Classes

public RWCollectable

Public Functions

FoTlExpectedState& FetchTable()

Called by TLM to request the generation of an expected state table.

Private Functions

EcTInt CreateConnection()

Establishes a connection between this proxy and the Ground Schedule. Returns TRUE is the connection was successful.

EcTVoid DestroyConnection()

Removes the connection between this proxy and the Ground Schedule.

FoTlExpectedState Receive()

Receives an Expected State Table from the Ground Schedule and returns it.

EcTVoid Send(const FoMsTableRequest&)

Sends a request to the Ground Schedule.

FmMsGenerateOpAids

class FmMsGenerateOpAids
This class represents an interface between the Ground Schedule and FUI. Its purpose is to provide FUI with a means to get
information from the Ground Schedule. This class is able to send and receive certain objects via an ipc mechanism.

Public Functions

FoGsStatus GenerateGndScript(const FoMsGsGenReq&)

Send a generate ground script request object to the Ground Schedule and receives a status on the generation in return

Private Functions

EcTInt CreateConnection()

Establishes the connection between this proxy and the Ground Schedule

3-73 305-CD-042-001

EcTVoid DestroyConnection()

Removes the connection between this proxy and the Ground Schedule

FoGsStatus Receive()

Receives the ground script status object from the Ground Schedule and returns it

EcTVoid Send(const FoMsGsGenReq&)

Sends the Ground Script Request object to the Ground Schedule

FmScGroundSchedule

class FmScGroundSchedule
This class represents the ground schedule. It is a time-ordered list of commands, representing seven operational days of the
spacecraft. The class is responsible for maintaining the list of commands, generating reports, generating ground scripts, and
creating and updating the expected state table.

Base Classes

public RWCollectable

Public Functions

FoTlExpectedState& CreateEST(const RWTime&)

Creates the expected state table object for a given time, adds it to myTableList, and writes it to a file in DMS.

FoGsStatus CreateGroundScript(const FoMsGsGenRequest&)

Makes a FoGsGroundScript object from the schedule upon request. Stores the script to a file.

EcTVoid CreateIntegratedReport()

Creates the integrated report. Whenever a new DAS is added to the schedule, a report is generated for the previous DAS.

EcTVoid DeleteDirectives(const RWSlistCollectables&)

Deletes all directives with the specified DASId from the schedule.

EcTVoid HandleMessage()

Handles all ipc messaging for the Ground Schedule.

EcTVoid Initialize()

Creates the empty schedule and table list. Populates the CEV Table.

EcTInt ProcessDAS(const FmScDAS&)

Adds the DAS to the schedule. Creates an expected state table and an integrated report.

EcTVoid ProcessOrbitalEvents(const RWSlistCollectables&)

Adds the orbital events to the ground schedule.

EcTVoid ProcessUplinkSched(const FmScUplinkSched&)

Adds the uplink commands to the ground schedule.

FmMnDirectiveList& ReturnCCList(const FmGsListRequest&)

Creates a special list of directives to use against a DAS for constraint checking. This list is given to the Schedule Con-
troller.

Private Data

FoGsCEVTable myCEVTable

A table of Command Execution Verification records, used to create Expected State Tables.

FoEvEvent* myEventPtr

A pointer to an FoEvEvent object.

3-74 305-CD-042-001

FmMnDirectiveList mySchedule

A doubly-linked list of FoEcDirectives.

FoTlExpectedState myExpectedState

A table representing the state of the spacecraft at a certain point in time.

FoGsCEVDataField

class FoGsCEVDataField

Base Classes

public RWCollectable

Private Data

EcTInt myCEVpid

A unique number identifying the telemetry parameter.

RWCString myCmdMnemonic

The mnemonic of the command associated with the CEVpid.

EcTInt myHighValue

The highest possible value allowed for this data field.

EcTInt myLowValue

The lowest possible value allowed for this data field.

FoGsCEVTable

class FoGsCEVTable
class definition - This class represents a table containing information about command execution verification values. The table
consists of a number of data fields, each with the information about the CEV values.

Public Functions

FoGsCEVDataField LookUp(const RWCString&)

Look in the table for the given command mnemonic, and return the data field having that command mnemonic.

Private Data

RWSlistCollectables myCEVData

A list of FoGsCEVDataFields belonging with this table.

FoGsGroundScript

class FoGsGroundScript
This class represents the ground script.

It is generated and stored as a file with DMS.

Base Classes

public FoDsFile

Private Data

FmMnDirectiveList myDirectives

A list of directives for the Ground Script.

3-75 305-CD-042-001

RWCString mySpacecraftId

The id of the spacecraft for which ground script is generated.

RWTime myStartTime

The starting time of the ground script.

RWTime myStopTime

The ending time of the ground script.

FoGsStatus

class FoGsStatus

Base Classes

public RWCollectable

Private Data

RWCString myDirectory

The name of the directory where the Ground Script was stored.

RWCString myFilename

The filename of the Ground Script.

EcTInt myStatus

Textual information about the generation of the Ground Script, including any errors that were encountered,

FoMsGsGenReq

class FoMsGsGenReq

Base Classes

public RWCollectable

Private Data

RWCString myDirectory

The name if the directory where the Ground Script should be stored.

RWCString myFilename

The filename that the Ground Script should be given.

EcTInt myProcExpFlag

An indicator of whether or not to include expanded procedures in the Ground Script.

RWCString myScId

The id of the spacecraft for the Ground Script.

EcTLongInt myStartTime

The time at which the Ground Script should start, implemented as a number of seconds.

EcTLongInt myStopTime

The time at which the Ground Script should end. If no end time is specified, the Ground Script will be generated up to
the last command in the Schedule.

3-76 305-CD-042-001

FoMsTableRequest

class FoMsTableRequest

Base Classes

public RWCollectable

Private Data

RWTime myTime

The time at which the Expected State Table should be generated. The default is now.

FoRpIntegratedReport

class FoRpIntegratedReport
This class represents the integrated report.

It is generated from information in the Ground Schedule and

stored as a file with DMS.

Base Classes

public FoDsFile

Private Data

FmMnDirectiveList myDirectiveList

A list of directives for the Integrated Report.

FoTlExpectedState

class FoTlExpectedState
class definition

Base Classes

public RWCollectable

Public Functions

EcTVoid Compare(const FoPsClientBuffer&)

Compares the input table to this table, and puts the result of the comparison in an event message.

RWSlistCollectables GetPids()

Returns a list of pids that exist in this table.

EcTInt Replace(const FoPsClientBuffer&)

Replaces the values in this table with the values in the input table.

EcTInt UpdateTable(const RWDlistCollectables&)

Updates the table using the CEV table and the input directives.

Private Data

FoGsCEVTable* myCEVTable

A pointer to the CEV table, gotten from the database by the Ground Schedule. The CEV table is used to generate a new
Expected State Table.

RWSlistCollectables& myData

A list of data fields which hold all the information for for this table.

3-77 305-CD-042-001

RWTime myTime

The time at which this table was generated.

FoTlExpectedValue

class FoTlExpectedValue
class definition

Base Classes

public RWCollectable

Private Data

EcTInt myHighValue

The highest possible value acceptable for this field. It can be either an integer or a float.

EcTInt myLowValue

The lowest possible value accepted for this field. It can be either an integer or a float.

EcTInt myPID

A unique number identifying the parameter id for this field.

3-78 305-CD-042-001

3.4 Command Model
The Command Model component consists of two processes that run on the FOS Data Server: Com-
mand Model and Rule Constraint Check. Together these processes are responsible for performing
rule-based constraint checking on lists of commands.

The Command Model process is persistent and is responsible for handling interprocess communi-
cation with other subsystems and with other CMS processes. Command Model receives requests
for constraint checking of activity definitions, RTS definitions, command procedure definitions,
and command lists representing scheduled activities. After the constraint check is complete, Com-
mand Model returns a status, including a list of constraint violations, to the requesting process.

Rule Constraint Check is a temporary process spawned by Command Model to actually perform
the constraint checking. Constraint definitions are associated in the FOS database with the
commands that they apply to. Rule Constraint Check examines the list of commands passed to it
and, for each command having an associated constraint, performs the constraint check.

3.4.1 Command Model Context

The CMS Command Model interfaces with several FOS subsystems and the CMS Schedule
Controller task, as shown in the Context Diagram (see Figure 3.4-1) and summarized below.

CMS Schedule Controller:

• Sends a Directive List, which contains a sequence of ATC, RTS, and real-time commands.

• Receives a Constraint Check Status, which includes information on any directive that
violated a database defined constraint.

CMS Load Catalog:

• Sends an RTS Load Contents, which contains a sequence of commands with relative time
tags.

• Receives a Constraint Check Status, which includes information on any directive in an RTS
load contents that violated a database defined constraint.

User Interface:

• Sends a Command Procedure, which contains a sequence of ECL directives including real-
time commands.

• Receives a Constraint Check Status, which includes information on any directive in a
procedure that violated a database defined constraint.

Data Management:

3-79
305-C

D
-042-001

CMS
Schedule
Controller

DMS FUI

CMS
Command Model

CMS
Load

Catalog

This System

Command List

CMS Status

Command
Procedure

CMS StatusConstraint Definitions,
Activity Definition

Command List

CMS Status,
Events

RTS Load
Contents

CMS Status

Figure 3.4-1. Command Model Context Diagram

3-80 305-CD-042-001

• Sends an Activity Definition Directive List, which contains a sequence of commands with
relative time tags.

• Receives a Constraint Check Status, which includes information on any directive in an
activity definition that violated a database defined constraint.

• Provides Constraint Definitions, which specify the rules being checked.

• Receives Events, which are status messages about CMS Command Model processing.

3.4.2 Command Model Interfaces

Table 3.4.2. Command Model Interfaces

Interface
Service

Interface Class Interface Class
Description

Service
Provider

Service
User

Frequency

Validate
Activities

FmMsValidateActi
vities

Proxy between Command
Model and DMS.
Receives a list of activity
definitions to be constraint
checked. Result list of
FoMsCMSStatus is
returned

CMS:
Command
Model

DMS: PDB
Validation

1/week

Validate
Procedure

FmMsValidatePro
cedure

Proxy between Command
Model and FUI

CMS:
Command
Model

FUI:
Procedure
Builder

1/week

FoMSValidatePro
cReq

Request to validate given
procedure

FoMsCMSStatus Status of constraint check

Validate DAS
Command
List

FmMsValidateCo
nstraints

Proxy between CMS:
Command Model and
CMS: Schedule Controller

CMS:
Command
Model

CMS:Sche
dule
Controller

1/day

FmScConstCk Command List to be
constraint checked

FoMsCMSStatus Status of constraint check

Validate RTS
load

FmMsValidateCo
nstraints

Proxy between CMS:
Command Model and
CMS: Load Catalog.
Proxy retrieves RTS load
to be constraint checked

CMS:
Command
Model

CMS: Load
Catalog

1/day

FoMsCMSStatus Status of constraint check

Send Events FoFdEventLogger Proxy between DMS and
CMS: Spacecraft
requesting broadcast of a
message

DMS: Event
Logger

CMS:
Spacecraft

10/day

3-81 305-CD-042-001

3.4.3 Command Model Object Model

FmCcCommandModel controls the processing of requests for rule-based command-level
constraint checking of scheduled commands, procedure definitions, RTS load definitions, and
activity definitions (see figures 3.4-2 through 3.4-8). FmCcCommandModel passes the
FmScConstCk list of scheduled commands received from the CMS Schedule Controller directly to
FmCcRuleConstraintModel for constraint checking. For procedure, RTS, or activity definitions,
FmCcCommandModel creates an FmCcDirectiveList from the definition and passes it to
FmCcRuleConstraintModel.

To process a request for checking an RTS definition, FmCcCommandModel expands the RTS
definitions and forwards the directive list to be constraint checked.

To process a request for checking a procedure definition, FmCcCommandModel makes a single
FmCcDirectiveList for each possible path in a procedure. The directive lists include the further
expansion of procedures called from within the definition being validated. Each of these lists are
sent to FmCcRuleConstraintModel for command rule-based constraint checking. The list of
FoMsConflictInfos received in FoMsCMSStatus for each list are combined to make a single
FoMsCMSStatus. The worst status returned will determine the newly created FoMsCMSStatus
that is forwarded to FmMsValidateProcedure proxy.

To process a request for checking an activity definition, FmCcCommandModel processes of list of
activity definitions. Each activity definition is expanded into a FmCcDirectiveList. Procedures
within activities are also expanded as described above, this will create multiple
FmCcDirectiveLists per activity definition. Each list is command rule-based constraint checked.
The FoMsConflictInfo for each directive list is combined so that there is one FoMsCMSStatus for
each activity definition. A list of FoMsCMSStatuses is returned to FmMsValidateActivities proxy.

The proxies, FmMsValidateConstraints, FmMsValidateProcedure, and FmMsValidateActivites,
provide interprocess communication (IPC) between the FmCcCommandModel and its various
interfaces.

FmMsValidateConstraints manages communications with the CMS Schedule Controller
(FmScScheduleController) and the CMS Load Catalog (FmLdLoadCatalog).
FmMsValidateConstraints receives a FmScConstCk command list from the schedule controller
which is forwarded to FmCcCommandModel. It also receives the RTS file name and location.
From this information it creates a FmCcDirectiveList from the RTS directives and this list is sent
to FmCcCommandModel for processing.

3-82
305-C

D
-042-001

FmCcCommandModel

FmCcRuleConstraintModel

FmMsValidateActivities

FmMsValidateConstraints

{I/F proxy to Internal CMS subsystems}

{I/F proxy with DMS}

CsIfMessageHandler

FdEvEventLogger

{I/F proxy with DMS}

Connect()
Disconnect()
Receive()
Send()

CreateConnection()
DestroyConnection()
Receive()
Send(const RWCollectable&)
ValidateCommands(const FmScConstCk&)
ValidateRTS(const RWCString&, const RWCString&)

CreateConnection()
DestroyConnection()
Receive()
Send(const RWSlistCollectables&)
ValidateActivities(const RWSlistCollectables&)

FmCcDirectiveList

FoEcDirective

CONTINUED

BuildActivityList(const FoAcActivityDef&, const RWSlistCollectables&)
BuildProceduresList(const FoClProcedure&, const RWSlistCollectables&)
HandleMessage(const RWCollectable&)
ProcessActivityDefinitions(const RWSlistCollectables&)
ProcessCommandList(const FmScConstCk&)
ProcessIF(RWSlistCollectablesIterator&, RWSlistCollectables&)
ProcessProcedureDefinitions(const FoClProcedure&)
ProcessRTSDefinitions(const FoCcDirectiveList&)
ProcessSTART(const RWCString&, const RWCString&)
RTProcessing()
SendConflictInfo(const RWSlistCollectable&)

CONTINUED

FmMsValidateProcedure

{I/F proxy with FUI}
CONTINUED

 +
 +
 +
 +

 + : EcTInt
 + : EcTVoid
 + : FoMsCMSStatus&
 + : FoMsCMSStatus&
 + : FoMsCMSStatus&
 + : FoMsCMSStatus&

 + : EcTInt
 + : EcTVoid
 + : RWSlistCollectables&
 + : RWSlistCollectables&
 + : RWSlistCollectables&

 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : RWSlistCollectables&
 + : FoMsCMSStatus&
 + : RWSlistCollectables&
 + : FoMsCMSStatus&
 + : FoMsCMSStatus&
 + : RWSlistCollectables&
 + : EcTVoid
 + : EcTVoid

receives
event messages

receives activities
for validation

sends command
list for

validation

handles
IPC

creates

communicates
with

is created by

Figure 3.4-2. Command Model Object Model (1 of 7)

3-83
305-C

D
-042-001

FmCcCommandModel

FoMsCMSStatus

FoMsValidateProcReq

FmMsValidateProcedure

FoClProcedure

FoEcDirective

myProcName
myDirectory

CreateConnection()
DestroyConnection()
Receive()
ValidateProcedure(const FoMsValidateProcReq&)
Send(const FoClProcedure&)

myName
myArgCnt
myType
myAuthor
mySyntaxFlag
myValidationFlag
myScId
myInstrId
myVersionNum
myEditFlag
myCmDir
myWorkingDir
myTmpPath
myArg
myProcControl

Read()
Write()
CheckSyntax()
GetMetaData()

myId
myStatus

CONTINUED

CONTINUED

{I/F proxy with FUI}

{shared - FMN,FUI}

{shared - FUI,FMN,FPS}

 - : RWCString
 - : RWCString

 + : EcTInt
 + : EcTVoid
 + : FoMsCMSStatus&
 + : FoMsCMSStatus&
 + : FoMsCMSStatus&

 - : String
 - : EcTInt
 - : enum{Emer,Cmd,Local,ActDef,User}
 - : String
 - : EcTBoolean
 - : EcTBoolean
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTBoolean
 - : String
 - : String
 - : String
 - : Container*
 - : FuClProcControlWin*

 + : String
 + : EcTInt
 + : EcTInt
 + : EcTVoid

 - : EcTInt
 - : RWCString

communicates
with

recieves

is sent to
recieves

creates/
sends

is received by

Figure 3.4-3. Command Model Object Model (2 of 7)

3-84
305-C

D
-042-001

FmCcRuleConstraintModel

FmCcCommandRule

FmCcCommandModel

FoMsCMSStatus

myId
myStatus

myBitLocation
myValue

myNumber
mySubfieldName

FmCcDataField

FmCcComparisonBits

FmCcSymbolDef

myNamemyHardSoftFlag
myTrigger

myCommandList
myConstraintList
myStatus

PerformConstraintCheck(const FmCcCommandRule &)
ProcessList()

CONTINUED

FmCcPreRule FmCcPostRule

FmCcRepeatAfterRule

FmCcNoRTCmdsRule

FmCcNoCmdsBeforeRule

FmCcNoCmdsAfterRule

FmCcBitRule FmCcOffsetRule

FmCcNoExistRule

FmCcTelemetryRule

FmCcScalarRule

CONTINUED CONTINUED

CONTINUED CONTINUED

CONTINUED CONTINUED CONTINUED CONTINUED

CONTINUED CONTINUED CONTINUED

 - : EcTInt
 - : RWCString

 - : EcTInt
 - : EcTInt

 - : EcTInt
 - : RWCString

 - : RWCString - : enum(H,S)
 - : FmCcSymbolDef

 - : RWDlistCollectables
 - : RWSlistCollectables
 - : enum {failed,passed,pending}

 + : EcTVoid
 + : FoMsCMSStatus&

creates

verifies

1+

sends

Figure 3.4-4. Command Model Object Model (3 of 7)

3-85
305-C

D
-042-001

FmCcRuleConstraintModel

FmCcCommandRule

FmCcBitRule

FmCcScalarRule

FmCcNoExistRule

myComparisonValue
myDataField
mySubfieldName

FmCcTelemetryRule

myOperator

Evaluate(const RWSlistCollectables &)

myText

Evaluate()

myComparisonBits
myDataField
myNotFlag
mySubfieldName

Evaluate(const RWSlistCollectables &)

myExcluder

Evaluate(const RWDlistCollectables &)

FmCcComparisonBits

FmCcSymbolDef

myHardSoftFlag
myTrigger

CONTINUED

CONTINUED

CONTINUED

 - : Type
 - : EcTInt
 - : RWCString
 - : enum(LT,LE,GT,GE,EQ,NE)

 + : FoMsCMSStatus&

 - : RWCString

 + : FoMsConflictInfo&

 - : RWSlistCollectables
 - : EcTInt
 - : EcTBoolean
 - : RWCString

 + : FoMsConflictInfo&

 - : RWCString

 + : FoMsConflictInfo&

 - : enum(H,S)
 - : FmCcSymbolDef

verifies

Figure 3.4-5. Command Model Object Model (4 of 7)

3-86
305-C

D
-042-001

Evaluate(const RWDlistCollectables &, EcTInt)

FmCcRuleConstraintModel

FmCcCommandRule

FmCcRepeatAfterRule

FmCcNoCmdsBeforeRule FmCcNoCmdsAfterRule

FmCcOffsetRule

FmCcNoRTCmdsRule

Evaluate(const RWDlistCollectables&, EcTInt)

myOffset

Evaluate(const RWDlistCollectables &, EcTInt)

Evaluate(const RWDlistCollectables &, EcTInt)

FmCcSymbolDef

Evaluate(const RWDlistCollectables &, EcTInt)

myHardSoftFlag
myTrigger

CONTINUED

CONTINUED

 + : FoMsConflictInfo&

 + : FoMsConflictInfo&

 - : EcTULongInt

 + : FoMsConflictInfo&

 + : FoMsConflictInfo&

 + : FoMsConflictInfo&

 - : enum(H,S)
 - : FmCcSymbolDef

verifies

Figure 3.4-6. Command Model Object Model (5 of 7)

3-87
305-C

D
-042-001

FmCcRuleConstraintModel

FmCcCommandRule

FmCcPostRule

FmCcPreRule

FmCcSymbolDef

myMaxTime
myMinTime
myPacifier

Evaluate(constRWDlistCollectables &, EcTInt)

myExcluder
myMaxTime
myMinTime
mySatisfier

Evaluate(const RWDlistCollectables &, EcTInt)

myHardSoftFlag
myTrigger

CONTINUED

CONTINUED

 - : EcTULongInt
 - : EcTULongInt
 - : RWSlistCollectables

 + : FoMsConflictInfo&

 - : FmCcSymbolDef
 - : EcTULongInt
 - : EcTULongInt
 - : RWSlistCollectables

 + : FoMsConflictInfo&

 - : enum(H,S)
 - : FmCcSymbolDef

verifies

1+ 1+

Figure 3.4-7. Command Model Object Model (6 of 7)

3-88
305-C

D
-042-001

FoMsConflictInfo

myCmdMnemonic
myConflictingCmd
myConstraintTime
myId
mySoftHardFlag
myViolationInfo

FoMsCMSStatus

FoMsStatusFailed FoMsStatusComplete FoMsStatusPending

myId
myStatus

 - : RWCString
 - : RWCString
 - : RWTime
 - : EcTInt
 - : EcTInt
 - : RWCString

 - : EcTInt
 - : RWCString

Figure 3.4-8. Command Model Object Model (7 of 7)

3-89 305-CD-042-001

FmMsValidateProcedure manages communication with FUI. FmMsValidateProcedure receives
the location of the procedure definition and instantiates the FoClProcedure class which is sent to
FmCcCommandModel for processing.

FmMsValidateActivities manages communication with DMS. FmMsValidateActivities receives
a list of activity definitions. This list is forwarded to FmCcCommandModel for processing.

FmCcRuleConstraintModel processes the directive lists. It keeps track of the number of ATC
commands issued in the same second and verifies the existence of a load when an uplink request
is detected. If a directive in the list has a constraint associated with it , FmCcRuleConstraintModel
performs the validation of that database defined command constraint rule. Depending on the
requirement of the rule, the directive list can be searched forward or backward to locate (or not)
the command that will satisfy the rule. FmCcRuleConstraintModel returns an FoMsCMSStatus.

FmCcSymbolDef is associated with the different FmCcCommandRules. It allows certain triggers,
excluders, satisfiers and pacifiers to be defined in greater detail. Each rule has a symbol definition.
If a FmCcSymbolDef doesn't have FmCcDataFields defined for it, then the trigger, excluded,
satisfier, or pacifier is the command itself, i.e. the command need only exist and not have its data
fields set to a certain value. If there are multiple FmCcSymbolDefs defined (this is only allowed
for satisfiers and pacifiers) then the rule may be validated if any one of the FmCcSymbolDef
commands is found in the command list. If FmCcDataFields are defined then the bits for those
data fields must match the command in the list in order to validate the constraint on the current
command (trigger).

Triggers (the current command being constraint checked) for FmCcTelemetryRule, FmCcPreRule
and FmCcPostRule may have FmCcDataFields defined, but may not have multiple instances of
FmCcSymbolDef. All other FmCcCommandRule types may only have a single instance of
FmCcSymbolDef without FmCcDataFields defined - the simplest form. The Excluded command
in FmCcPreRule may have FmCcDataFields defined but may not have multiple
FmCcSymbolDefs. The Excluded command in FmCcNoExistRule may only be defined in the
simplest form of FmCcSymbolDef. Pacifiers and Satisfiers can have any one of the three instances
of a FmCcSymbolDef.

FmCcCommandRule is an abstract class. All the rule types are derived from this class.
FmCcCommandRule returns an FoMsConflictInfo when a violation occurs or NULL if the
command rule is verified. Only one FmCcCommandRule is evaluated at any one time.

FmCcBitRule is derived from FmCcCommandRule. It verifies the rule specified data field
FmCcComparisonBits are (or are not) equal to the data field of the trigger command.

FmCcNoCmdsAfterRule is derived from FmCcOffsetRule. It verifies that no commands are
issued between the trigger command and the rule specified offset.

FmCcNoCmdsBeforeRule is derived from FmCcOffsetRule. It verifies that no commands are
issued between the rule specified offset and the trigger command.

FmCcNoExistRule is derived from FmCcCommandRule. It verifies that the rule specified
Excluded command is not in the command list.

FmCcNoRTCmdsRule is derived from FmCcOffsetRule. It verifies that after the trigger command
is planned to be issued to a certain remote terminal (RT) that no other commands are issued to the
same RT until the offset.

3-90 305-CD-042-001

FmCcOffsetRule is derived from FmCcCommandRule. This is an abstract class. Any rule that has
an offset is derived from this class.

FmCcPostRule is derived from FmCcCommandRule. It verifies that the given pacifier succeeds
the trigger command in the given time period. The trigger may only have a single
FmCcSymbolDef defined with optional FmCcDataFields specified. The pacifier may be defined
using multiple FmCcSymbolDefs indicating that any one command in the list of
FmCcSymbolDefs may satisfy the rule.

FmCcPreRule is derived from FmCcCommandRule. It verifies that the given satisfier proceeds
the trigger command in the given time period. An optional excluded command may be defined and
represents a command that cannot occur between the current command and the given satisfier. The
trigger and the excluded may only have a single FmCcSymbolDef defined with optional
FmCcDataFields specified. The satisfier may be defined using multiple FmCcSymbolDefs
indicating that any one command in the list of FmCcSymbolDefs may satisfy the rule.

FmCcScalarRule is derived from FmCcCommandRule. It verifies that the trigger command data
fields value properly compares to the FmCcDataField value stated in the rule. The following
comparisons are permitted: less than, less than or equal to, greater than, greater than or equal to,
equal to and not equal to.

FmCcTelemetryRule is derived from FmCcCommandRule. An FOT specified test string is output
to FoMsConflictInfo. the specified trigger may have only one FmCcSymbolDef defined with
optional FmCcDataFields.

FoMsCMSStatus is an abstract class that represents the results of command level rule-based
constraint checking. It contains a list of FoMsConflictInfo objects.

FoMsConflictInfo specifies the information concerning the violation of a command level rule-
based constraint check

FoMsStatusFailed is derived from FoMsCMSStatus. If any of the FoMsConflictInfo objects
indicate a hard constraint this object is returned.

FoMsStatusPending is derived from FoMsCMSStatus. If all of the FoMsConflictInfo objects
indicate soft constraints this object is returned.

FoMsStatusComplete is derived from FoMsCMSStatus. No FoMsConflictInfo objects were
returned as a result of evaluating the rules indicating the directive list is valid.

3-91 305-CD-042-001

3.4.4 Command Model Dynamic Model

The Command Model Dynamic Model has five scenarios:

• Initialization

• Expanded Directive List Receipt

• Command Procedure Receipt

• Activity Definition List Receipt

• RTS Load Definition Receipt

3.4.4.1 Command Model Initialization Scenario

3.4.4.1.1 Command Model Initialization Scenario Abstract

This scenario occurs when the Command Model process is started. It addresses the initialization
of the Command Model interfaces and loading of configuration files (see Figure 3.4-9).

3.4.4.1.2 Command Model Initialization Summary Information

Interfaces:

• Name Server
• FUI
• DMS Event Handling
• DMS Sybase
• CMS Schedule Controller
• CMS Load Catalog

Stimulus:

• Command Model process is started

Desired Response:

• Command Model is ready to receive request to perform rule based command level
constraint checking

Pre-Conditions:

• None

Post-Conditions:

•Command Model is ready to process requests

3-92
305-C

D
-042-001

FmCcCommandModel DMS

request connection

request configuration & startup files

listen for
other

connections

read configuration & startup files

Figure 3.4-9. Command Model Initialization Event Trace

3-93 305-CD-042-001

3.4.4.1.3 Command Model Initialization Scenario Description

The Expanded Directive List Receipt scenario describes the receipt and processing of an When the
Command Model is started FmCcCommandModel will initialize its interfaces by requesting
address information from the Name Server. Once the interface connections have been made
FmCcCommandModel will listen for requests.

3.4.4.2 Command Model Expanded Directive List Receipt Scenario

3.4.4.2.1 Command Model Expanded Directive List Receipt Scenario Abstract

Expanded Directive List from CMS Schedule (FmScScheduleController) via
FmMsValidateConstraints proxy (see Figure 3.4-10).

3.4.4.2.2 Command Model Expanded Directive List Receipt Summary Information

Interfaces:

• CMS Schedule Controller

Stimulus:

• Receipt of Expanded Directive List

Desired Response:

• Status returned

Pre-Conditions:

• Schedule controller software has been initiate

• Command model software has been initiated

Post-Conditions:

• None

3.4.4.2.3 Command Model Expanded Directive List Receipt Scenario Description

The Command Model receives the expanded directive list from the Schedule Controller. It sends
the directive list to the Rule Constraint Model for command rule-based constraint validation. An
FoMsCMSStatus is returned to the Schedule Controller.

3-94
305-C

D
-042-001

FmCcCommandModel

FmCcRuleConstraint
Model

FmMsValidateConstraints
(Internal CMS proxy)

FmScScheduleController

sends
directive

list

sends list
via IPC

sends
directive

list

returns
status

sends status
via IPC

sends
status

Figure 3.4-10 . Command Model Expanded Directive List Event Trace

3-95
305-C

D
-042-001

FmCcCommandModel

FmCcRuleConstraint
Model

FmMsValidateProcedure
(proxy for FUI)

FUI

sends procedure
via IPC

sends definiton

returns
status

sends status
via IPC

requests procedure
definition validation

sends status

Figure 3.4-11. Command Model Command Procedure Receipt Event Trace

3-96 305-CD-042-001

3.4.4.3 Command Model Command Procedure Receipt Scenario

3.4.4.3.1 Command Model Command Procedure Receipt Scenario Abstract

The Command Procedure Receipt scenario describes the receipt and processing of a procedure
from FUI via FmMsValidateProcedure proxy (see Figure 3.4-11). The proxy opens the procedure
file and restores a FoClProcedure class which is sent via IPC to FmCcCommandModel. The
Command Model builds FmCcDirectiveLists from the procedure. The directive lists are sent to

the Rule Constraint model where the database defined rules associated with the directives are
validated. An FoMsCMSStatus result is returned to FUI.

3.4.4.3.2 Command Model Command Procedure Receipt Summary Information

Interfaces:

• FUI

Stimulus:

• Receipt of Procedure

Desired Response:

• Status returned

Pre-Conditions:

• FUI procedure builder has been initiated
• Command model software has been initiated

Post-Conditions:

• None

3.4.4.3.3 Command Model Command Procedure Receipt Scenario Description

The Command Model receives the procedure from FUI via the FoMsValidateProcedure proxy. It
creates FmCcDirectiveLists for each possible path in a procedure. If another procedure is
referenced within the procedure being validated, it too is expanded. These lists are each sent to
the Rule Constraint Model for command rule-based constraint validation. Each call to the Rule
Constraint Model returns a FoMsCMSStatus. The Command Model combines the Conflicting
command information contained within the FoMsCMSStatus for each directive list that was built
for the procedure into one FoMsCMSStatus which is returned to FUI.

3.4.4.4 Command Model Activity Definition List Receipt Scenario

3.4.4.4.1 Command Model Activity Definition List Receipt Scenario Abstract

The Activity Definition Receipt scenario describes the receipt and processing of activity defini-
tions from DMS via the FmMsValidateActivities proxy (see Figure 3.4-12).

3.4.4.4.2 Command Model Activity Definition List Receipt Summary Information

Interfaces:

• DMS
Stimulus:

3-97
305-C

D
-042-001

FmCcCommandModel

FmCcRuleConstraint
Model

FmMsValidateActivites
(proxy for DMS)

DMS

sends definition
via IPC

sends
directive

list for each
activity

returns
status for each

activity

sends status
list via IPC

requests activity
definition validation

(sends list of definitions)

sends status
list

Figure 3.4-12. Command Model Activity Definition List Receipt Event Trace

3-98 305-CD-042-001

• Receipt of Activity Definition List

Desired Response:

• Status returned

Pre-Conditions:

• DMS validation software has been initiated

• Command model software has been initiated

Post-Conditions:

• None

3.4.4.4.3 Command Model Activity Definition List Receipt Scenario Description

The Command Model receives a list of activity definitions from DMS via the
FoMsValidateActivities proxy. It creates FmCcDirectiveList for each activity. Since activities
may reference procedures, the definitions are expanded. Multiple directive lists may exist for each
activity due to procedure expansion described above. These lists are each sent to the Rule
Constraint Model for command rule-based constraint validation. Each call to the Rule Constraint
Model returns a FoMsCMSStatus. The Command Model combines the Conflicting command
information contained within the FoMsCMSStatus for each directive list that was built for an
activity and creates one FoMsCMSStatus for that activity. A list of FoMsCMSStatuses, one for
each activity being command rule-based constraint checked, is returned to DMS.

3.4.4.5 Command Model RTS Load Definition Receipt Scenario

3.4.4.5.1 Command Model RTS Load Definition Receipt Scenario Abstract

The RTS Definition Receipt scenario describes the receipt and processing of an RTS load contents
from CMS Load Catalog (FmLdLoadCatalog) via FmMsValidateConstraints proxy (see Figure
3.4-13).

3.4.4.5.2 Command Model RTS Load Definition Receipt Summary Information

Interfaces:

• CMS Load Catalog

• DMS

Stimulus:

• Receipt of RTS Definition

Desired Response:

• Status returned

3-99
305-C

D
-042-001

FmCcCommandModel

FmCcRuleConstraint
Model

FmMsValidateConstraints
(Internal CMS proxy)

FmLdLoadCatalog

requests
RTS

validation

sends RTS
load contents

file via IPC

sends
directive

list

returns
status

sends status
via IPC

sends
status

Figure 3.4-13. Command Model RTS Load Definition Receipt Event Trace

3-100 305-CD-042-001

Pre-Conditions:

• Load catalog software has been initiated

• Command model software has been initiated

Post-Conditions:

• None

3.4.4.5.3 Command Model RTS Load Definition Receipt Scenario Description

The Command Model receives the RTS load contents definition from Load catalog via
FmMsValidateConstraints. It builds an FmCcDirectiveList and sends the list to the Rule
Constraint Model for command rule-based constraint validation. An FoMsCMSStatus is returned
to the Load Catalog

3-101 305-CD-042-001

3.4.5 Command Model Data Dictionary

Preprocessor Macros

_FmCcCommandModel_h_

Types

class FmCcCommandModel
The command model provides access to command level rule based constraint checking for scheduled commands, commands
within an RTS load contents definition file, commands within activity definitions, and commands within procedures.

Public Functions

EcTInt BuildActivityList(const FoAcActivityDef&, const RWSlistCollecta-
bles&)

Builds the lists for Activities

EcTInt BuildProceduresLists(const FoClProcedure&, const RWSlistCollecta-
bles&)

Builds the lists for procedures

EcTVoid HandleMessage(const RWCollectable&)

Handles all messages between proxies. The proxies are as follows: FmMsValidateConstraints - used internal to CMS,
FmMsValidateProcedure - used by FUI, and FmMsValidateActivities - used by DMS

FoMsCMSStatus& ProcessActivityDefinitions(const FoFdActivityList&)

For each activity in the FoFdActivityList the commands within the activity are sent to the FmCcRule ConstraintModel to
be validated

FoMsCMSStatus& ProcessCommandList(const FmScConstCk&)

Process scheduled directives received from PAS

EcTVoid ProcessIF(RWSlistCollectablesIterator&, RWSlistCollectables&)

Processes IF directive when expanding procedures

FoMsCMSStatus& ProcessProcedureDefinitions(const FoClProcedure&)

Validates Procedures

FoMsCMSStatus& ProcessRTSDefinitions(const FoDirectiveList&)

Validates RTS load contents files

RWSlistCollectable& ProcessSTART(RWCString&, RWCString&)

Processes START directive to expand procedures

EcTVoid SendConflictInfo(const FoMsCMSStatus&)

Sends a single FoMsCMSStatus - results of rule based constraint checking to either FUI, the scheduled controller (CMS),
or the load catalog (CMS)

EcTVoid SendStatuses(const RWSlistCollectables&)

Sends a list of FoMsCMSStatus(es) to DMS

3-102 305-CD-042-001

Preprocessor Macros

_FmCcCommandRule_h_

Types

enum FlagType
Enumeration type for hard/soft flag

Enumerators

H
S

class FmCcCommandRule

Public Functions

GetHardSoftFlag(void)

gets myHardSoftFlag

RWCString& GetTrigger(void)

Gets myTrigger

EcTVoid SetHardSoftFlag(const enum)

Sets myHardSoftFlag

EcTVoid SetTrigger(const RWCString&)

sets myTrigger

Private Data

FlagType myHardSoftFlag
RWCString myTrigger

Include Files

FmCcOffsetRule.h

Preprocessor Macros

_FmCcNoCmdsAfterRule_h_

Types

class FmCcNoCmdsAfterRule
This class determines if any command is performed after the offset. The rule reads as follows:

If command A then NO commanding at least X seconds before command A.

Base Classes

public FmCcOffsetRule

Public Functions

FoMsConflictInfo& Evaluate(const RWDlistCollectables&, EctInt)

Test to see if the next command is issued before the offset

3-103 305-CD-042-001

Include Files

FmCcOffsetRule.h

Preprocessor Macros

_FmCcNoCmdsBeforeRule_h_

Types

class FmCcNoCmdsBeforeRule
this class determins if any command is performed between the offset and the current command. The rule reads as follows:

If command A then NO commanding at least X seconds before command A.

Base Classes

public FmCcOffsetRule

Public Functions

FoMsConflictInfo& Evaluate(const RWDlistCollectables&, EcTInt)

Include Files

FmCcCommandRule.h

Preprocessor Macros

_FmCcNoExistRule_h_

Types

class FmCcNoExistRule
This rule searches the entire command list to determine if myExcluder is in the command list If found it is a violation. The rule
reads as follows:

If command A occurs then command B must not occur

Base Classes

public FmCcCommandRule

Public Functions

FoMsConflictInfo& Evaluate(const RWDlistCollectables&)

Determines if myExcluder is in the command list

Protected Functions

RWCString& GetExcluder(void)

gets myExcluder

EcTVoid SetExcluder(const RWCString&)

Sets myExcluder

Private Data

RWCString myExcluder

The command mnemonic that is not to occure in the command list

3-104 305-CD-042-001

Include Files

FmCcOffsetRule.h

Preprocessor Macros

_FmCcNoRTCmdsRule_h_

Types

class FmCcNoRTCmdsRule
This class ensures that commands are not being sent to the same RT at the current (executing) command before the offset ex-
pires

Base Classes

public FmCcOffsetRule

Public Functions

FoMsConflictInfo& Evaluate(const RWDlistCollectables&, const EcTInt)

Ensures that once a command is sent to the RT no other commands are sent to that RT before the offset

Include Files

FmCcCommandRule.h

Preprocessor Macros

_FmCcOffsetRule_h_

Types

class FmCcOffsetRule
This is the base class for those rules that have offset times: FmCcRepeatAfterRule, FmCcNoCmdsBeforeRule, FmCcNoCmd-
sAfterRule, and FmCcNoRTCmdsRule

Base Classes

public FmCcCommandRule

Public Functions

virtual FoMsConflictInfo& FmCcOffsetRule::Evaluate()

Abstact function for evaluating offset rules - no processing takes place

Protected Functions

EcTULongInt GetOffset(void)

gets myOffset

EcTvoid SetOffset(const EcTULongInt)

sets myOffset

Private Data

EcTULongInt myOffset

Offset for commanding - represents seconds

3-105 305-CD-042-001

Include Files

FmCcCommandRule.h

Preprocessor Macros

_FmCcPostRule_h_

Types

class FmCcPostRule
The Post rule ensures that if a certain command is issued then another specified command must occur within a given time frame.
The rule reads as follows:

If command A occurs, then command B must occur an dmust be at least X time later, and at most Y time later. A is the trigger
and B is the satisfier.

Base Classes

public FmCcCommandRule

Public Functions

FoMsConflictInfo& Evaluate(const RWDlistCollectables&, EcTInt)

Evaluates the PostRule: ensures that if a certain command is issued then another specified command must occur within
a given time frame.

Protected Functions

EcTULongInt GetMaxTime(void)

gets myMaxTime

EcTULongInt GetMinTime(void)

gets myMinTime

FmCcSymbolDef& GetPacifier(void)

gets myPacifier

EcTVoid SetMaxTime(const EcTULongInt)

sets myMaxTime

EcTVoid SetMinTime(const EcTULongInt)

Sets myMinTime

EcTVoid SetPacifier(const FmCcSymbolDef&)

sets myPacifier

Private Data

EcTULongInt myMaxTime

time that the pacifier can be found in the command list

EcTULongInt myMinTime

the pacifier can be found in the command list

FmCcSymbolDef myPacifier

symbols defined. If there are multiple symbols defined then any one of the symbols may satisfy the rule.

3-106 305-CD-042-001

Include Files

FmCcCommandRule.h

Preprocessor Macros

_FmCcPreRule_h_

Types

class FmCcPreRule
The preRule ensures that specified commands are executed before the command being evaluated. The rule reads as follows:

If command A occurs, then command B must have occurred at least X time earlier, and at most Y time earlier. Command C
must not occur between B and A. A is the trigger, B is the satisfier and C is the excluded which is optional

Base Classes

public FmCcCommandRule

Public Functions

FoMsConflictInfo& Evaluate(const RWDlistCollectables&, EcTInt)

Evaluates the PreRule: ensures that specified commands are executed before the command being evaluated. It allows the
exclusion of a specified command.

Protected Functions

FmCcSymbolDef& GetExcluder(void)

gets myExcluder

EcTULongInt GetMaxTime(void)

get myMaxtime

EcTULongInt GetMinTime(void)

gets myMinTime

FmCcSymbolDef& GetSatisfier(void)

gets mySatisfier

EcTVoid SetExcluder(const FmCcSymbolDef&)

Sets myExcluder

EcTVoid SetMaxTime(const EcTULongInt)

Sets myMaxTime

EcTVoid SetMinTime(const EcTULongInt)

sets myMinTime

EcTVoid SetSatisfier(const FmCcSymbolDef&)

sets mySatisfer

Private Data

FmCcSymbolDef myExcluder

definition may be defined for it

EcTULongInt myMaxTime

time that the satisfier can be found. It is optional, if it is not set then the max time is the beginning of the command list.

3-107 305-CD-042-001

EcTULongInt myMinTime

that the satisfier can be found.

FmCcSymbolDef mySatisfier

symbols defined. If there are multiple symbols defined then any one of the symbols may satisfy the rule.

Include Files

FmCcOffsetRule.h

Preprocessor Macros

_FmCcRepeatAfterRule_h_

Types

class FmCcRepeatAfterRule
This rule ensures that the command is not repeated before the offset expires. The command rule reads as follows:

If Command A then command A not before X seconds

Base Classes

public FmCcOffsetRule

Public Functions

FoMsConflictInfo& Evaluate(const RWDlistCollectables&, EcTInt)

Test to see if the trigger command is repeated before the offset expires

Preprocessor Macros

_FmCcRuleConstraintModel_h_

Types

class FmCcRuleConstraintModel
An instance of this class is instantiated for each command list that will be command rule-based constraint checked

Public Functions

GetStatus(void)

gets myStatus

RWDlistCollectables& GetCommandList(void)

gets myCommandList

RWSlistCollectables& GetConstraintList(void)

gets myConstraintList

EcTVoid PerformConstraintCheck(const FmCcCommandRule&)

Given a specific rule it evaluetes the command to verify that the constraint is not being violated

FoMsCMSStatus& ProcessList(void)

Steps through the mycommandList, verifies that no more than 8 commands are issued per second. Calls PerformCon-
straintCheck for those commands that have rules associated with them

EcTVoid SetCommandList(const RWDlistCollectables&)

sets myCommandList

3-108 305-CD-042-001

EcTVoid SetConstraintList(const RWSlistCollectables&)

sets myConstraintList

EcTVoid SetStatus(const enum&)

Sets myStatus

Private Data

RWDlistCollectables myCommandList

command list to be constraint checked

RWSlistCollectables myConstraintList

list of CommandInfo to put in FoMsCMSStatus

FoMsCMSStatus myStatus

enumerated - either pass, fail, or pending. Depending on the value of myStatus the correct FoMsCMSStatus will be cre-
ated.

Include Files

FmCcCommandRule.h

Preprocessor Macros

_FmCcScalarRule_h_

Types

enum CompareType
Enumeration for comaparison type

Enumerators

EQ
GE
GT
LE
LT
NE

template<class Type> class FmCcScalarRule
This class is a template class. The scalar rule can be performed on a single data field. A separate rule must be defined for each
data field that the rule will be applied. Data fields may be of type int, double, or float ...(??) DFCD should state valid types.
The rule reads as follows:

If command A occurs, the value of a particular data field must be less than, or greater than, or equal to, or less than or equal to,
or greater than or equal to, or not equal to X.

Base Classes

public FmCcCommandRule

Public Functions

FoMsConflictInfo& Evaluate(const RWSlistCollectables&)

list for the command and performs the proper operation.

3-109 305-CD-042-001

Protected Functions

GetOperator(void)

Gets operation to perform

Type GetComparisonValue(void)

Gets ComparisonValue

EcTInt GetDataField(void)

Gets data field to compare

RWCString& GetSubfieldName(void)

Gets Parameter name that test is being performed on

EcTVoid SetComparisonValue(const EcTInt)

Sets myComparisonValue

EcTVoid SetDataField(const EcTInt)

Sets myDataField

EcTVoid SetOperator(const enum)

Sets myOperator

EcTVoid SetSubfieldName(const RWCString&)

Sets mySubfieldName

Private Data

Type myComparisonValue

The value to test the command parameter against

EcTInt myDataField

The data field to test

CompareType myOperator

the operation to perform

RWCString mySubfieldName

The parameter mnemonic

Include Files

FmCcCommandRule.h

Preprocessor Macros

_FmCcTelemetryRule_h_

Types

class FmCcTelemetryRule
This rule allows a specific warning message to be output to the user when a command is encountered. The Hard/Soft flag for
this rule should be set to S(oft). The rule reads as follows:

If A occurs, print an FOT-supplied rule-specific text string in the conflict report

3-110 305-CD-042-001

Base Classes

public FmCcCommandRule

Public Functions

FoMsConflictInfo& Evaluate(void)

Returns myText to FmCcRuleConstraintModel

Protected Functions

RWCString& GetText(void)

Gets myText

EcTVoid SetText(const RWCString&)

sets myText

Private Data

RWCString myText

FOT supplied text message

Preprocessor Macros

_FmMsValidateActivities_h_

Types

class FmMsValidateActivities
This class is a proxy class for DMS to send one or more activities to be constraint checked

Public Functions

EcTInt CreateConnection(void)

Establishes a connection with FmCcCommandModel to permit the transfer of a list of activity definitions to be command
rule-based constraint checked.

EcTVoid DestroyConnection(void)

Destroys the connection with FmCcCommandModel

RWSlistCollectables& Receive(void)

Receives the results of rule-base command constraint checking, in regards to activities this is a list of FoMsCMSStatus(es)

RWSlistCollectables& Send(const FoFdActivityList&)

Sends a list of one or more activity definitions to the FmCcCommandModel for rule-base command constraint checking

RWSlistCollectables& ValidateActivities(const FoFdActivityList&)

Requests that a list of activities be rule based constraint checked This is the call used by the service user (DMS)

Preprocessor Macros

_FmMsValidateConstraints_h_

Types

class FmMsValidateConstraints
This class represents the interface proxy class between CMS internal subsystems and the FmCcCommandModel class. FmC-
cCommandModel manages the command rule-based constraint checking.

3-111 305-CD-042-001

Public Functions

EcTInt CreateConnection(void)

Establishes a connection with FmCcCommandModel to receive constraint checking request from the schedule controller
and the load catalog

EcTVoid DestroyConnection(void)

Destroys the connection with FmCcCommandModel

FoMsCMSStatus& Receive(void)

Receives the results of rule-base command constraint checking, FoMsCMSStatus

FoMsCMSStatus& Send(const RWCollectable&)

Sends either a FmScConstCk command list from the schedule controller or a FoCcDirective list created from an RTS load
contents file to the FmCcCommandModel for rule-base command constraint checking

FoMsCMSStatus& ValidateCommands(const FmScConstCk&)

FmScScheduleController invokes this function to send the DAS scheduled command list to be command rule-based con-
straint checked

FoMsCMSStatus& ValidateRTS(const RWCString&, const RWCString&)

FmLdLoadCatalog invokes this function to send the directory name and load name from the generate RTS load request
to be command rule-based constraint checked. This function creates the FoCcDirectiveList to the FmCcCommandModel.

Preprocessor Macros

_FmMsValidateProcedure_h_

Types

class FmMsValidateProcedure
This class represents the interface proxy class between FUI subsystem and the CMS FmCcCommandModel class. FmCcCom-
mandModel manages the command rule-based constraint checking .

Public Functions

EcTInt CreateConnection(void)

Establishes a connection with FmCcCommandModel to permit the transfer of procedure validation request

EcTVoid DestroyConnection(void)

Destroys the connection with FmCcCommandModel

FoMsCMSStatus& Receive(void)

Receives the results of rule-base command constraint checking, FoMsCMSStatus

FoMsCMSStatus& Send(const FoClProcedure&)

Sends a FoClProcedure object to the FmCcCommandModel for rule-base command constraint checking

FoMsCMSStatus& ValidateProcedure(const FoMsValidateProcReq&)

FUI invokes this function to send a validate procedure request to the FmCcCommandModel, so that the procedure can be
command rule-based constraint checked

3-112 305-CD-042-001

Include Files

FoEcGroundDirective.h

Preprocessor Macros

_FoEcComment_h_

Types

class FoEcComment
This class is used for comments in the ground script It may represent a space directive or simply plain text

Base Classes

public FoEcGroundDirective

Private Data

RWCString myText

The string to hold the comment

Include Files

FoEcTime.h

Preprocessor Macros

_FoEcDeltaTime_h_

Types

class FoEcDeltaTime
This time is derived from FoEcTime it represents a delta time that is plus/minus so many minutes and seconds from some spec-
ified time

Base Classes

public FoEcTime

Private Data

EcTChar myPlusMinusSign

the plus/minus sign indicates whehter time should be added to or taken from the specified time

EcTChar myStartStopIndicator

the start/stop indicator is used to determine if the delta should be taken from the start time or the stop time specified The
default is the start time

Preprocessor Macros

_FoEcDirective_h_

Types

class FoEcDirective
This is a shared class in the FOS. It represents a directive in the system. The directive can be used in an Activity definition, a
CMS schedule of directives, a command procedure and in a ground script.

3-113 305-CD-042-001

Public Functions

void CheckSyntax(EcTInt errcode)
void Execute(void)
void LogDirective(void)
void Parse(void)
void UpdateStatus(void)

Private Data

EcTInt myActivityId

The activity id in which this directive is scheduled

EcTInt myDASId

The DAS Id in which the directive is scheduled

FuTdDataSource* myDataSourceId

RWCString myDirectiveText

The directive text

FuGsGroundScriptControl* myGndScript

EcTInt myLineNum

the line number in the procedure

RWSlistCollectables myParameters

the parameters of a directive, the parameters ma the subfield parameters of a space or real-time command or parameters
of a ECL keyword (limits "on")

FoClProcedure* myProc

The procedure in which the directive was written

FuClProcControlWin* myProcControl

enum myProcFlag

enum mySource

EcTInt myStatus

Directive status

Private Types

enum

The source of the directive: manual, procedure, or ground script

Enumerators

gs
manual
proc

enum

a flag indicating if the directive is in a procedure

3-114 305-CD-042-001

Enumerators

n
y

Include Files

FoEcDirective.h

Preprocessor Macros

_FoEcGroundDirective_h_

Types

class FoEcGroundDirective
This class is derived from FoEcDirective is represents a directive that is placed in the ground script and is issued from the
ground system, that is this type of directive is never found on the spacecraft

Base Classes

public FoEcDirective

Private Data

RWCString myKeyword

Represents the keyword for the ground directive

Include Files

FoEcGroundDirective.h

Preprocessor Macros

_FoEcLabel_h_

Types

class FoEcLabel
This class is a ground directive that represents a label in a procedure. It allows the user to "goto" the label

Base Classes

public FoEcGroundDirective

Public Functions

RWCString& GetName(void)

Retrieves myName

EcTInt GetOffset(void)

Retrieves offset

EcTVoid Jump(void)

Jumps to offset or label name location

EcTVoid SetName(const RWCString&)

sets myName

3-115 305-CD-042-001

EcTVoid SetOffset(EcTInt)

Sets myOffset

Private Data

RWCString myName

Label Name

EcTInt myOffset

Label offset in the procedure

Include Files

FoEcGroundDirective.h

Preprocessor Macros

_FoEcRTCommand_h_

Types

class FoEcRTCommand
This class is derived from FoEcGroundDirective. It represents a real-time command. Real-time Commands are commands to
the spacecraft that are issued from the ground system.

Base Classes

public FoEcGroundDirective

Public Functions

RWBitVec& GetBinary(void)

Retrieves the binary representation of the command

RWCString& GetMnemonic(void)

retrieves the data base defined command mnemonic of the directive

EcTInt SetBinary(void)

Sets the binary representation for the directive

EcTVoid SetMnemonic(const RWCString&)

Sets the command mnemonic for the directive

Private Data

RWBitVec myBinary

The binary representation of the command mnemonic

RWCString myMnemonic

the command mnemonic

3-116 305-CD-042-001

Include Files

FoEcDirective.h

Preprocessor Macros

_FoEcSpaceDirective_h_

Types

class FoEcSpaceDirective
This class is derived from FoEcDirective. It represents a space command. Space Commands are commands to the spacecraft
that are issued from the spacecraft. These commands are either ATC or RTS commands or instrument commands.

Base Classes

public FoEcDirective

Public Functions

EcTInt FigureBinary()

Generates the binary representation of this directive.

RWBitVec& GetBinary()

Returns the binary.

EcTInt GetInhibitId()

Returns the inhibit id.

RWCString& GetMnemonic()

Returns the mnemonic.

EcTInt GetRTSFlag()

Returns the RTS flag.

EcTVoid SetInhibitId(EcTInt)

Sets the inhibit id to the input value.

EcTVoid SetMnemonic(const RWCString&)

Sets the mnemonic to the input value.

EcTVoid SetRTSFlag(EcTInt)

Sets the RTSFlag to the input value.

Private Data

RWBitVec myBinary

The binary representation of this directive, the format of which is described by the ICD.

EcTInt myInhibitId

The group id indicating what resource this directive could have an effect on.

RWCString myMnemonic

The mnemonic for the directive.

EcTInt myRTSFlag

An indicator specifying if this directive is part of an RTS or not.

3-117 305-CD-042-001

Include Files

FoEcTime.h

Preprocessor Macros

_FoEcSpaceTime_h_

Types

class FoEcSpaceTime
This class represent the time for the commands on the spacecraft. Time is converted so that when a command

is said to execute every second is is actually every 1.024

seconds.

Base Classes

public FoEcTime

Public Functions

EcTFloat GetConversionFactor()

Returns the conversion factor.

EcTVoid SetConversionFactor(EcTFloat)

Sets the conversion factor to the input value.

Private Data

EcTFloat myConversionFactor

The numeric factor which converts actual seconds to spacecraft seconds.

Include Files

RWTime.h

Preprocessor Macros

_FoEcTime_h_

Types

class FoEcTime
this class is generic for FOS so that all times are derived from the same epoch

Base Classes

public RWTime

Public Functions

RWTime& GetEpoch()

Returns the epoch.

EcTVoid SetEpoch(const RWTime&)

Sets the epoch to the input time.

3-118 305-CD-042-001

Private Data

RWTime myEpoch

The epoch upon which the time is based. Time is computed as the number of seconds since the epoch. The default epoch
for RWTime is Jan 1, 1901 at 00:00:00.

Preprocessor Macros

_FoMsCMSStatus_h_

Types

class FoMsCMSStatus
This class is used to return processing status to CMS's external interfaces. It returns status for constraint checking and for load
generation.

Private Data

EcTInt myId

or the Instruction request id that the status is in response to

RWCString myStatus

The status is either:

complete - everything processed without error
pending - the constraint check was complete with
 soft constraints only
failed - constraint violations found were hard constraints
 load generation failed

Preprocessor Macros

_FoMsConflictInfo_h_

Types

class FoMsConflictInfo
This class gives the identifying information on constraint violations. It specifies the id, the command mnemonic, the conflict-
ing command, the time the constraint violation occurred, whether the violation is hard or soft and a textual description of the
violaion

Private Data

RWCString myCmdMnemonic

the directive command mnemonic being constraint checked

RWCString myConflictingCmd

the command that violates the constraint rule

RWTime myConstraintTime

the time of the constraint

EcTInt myId

the ID represent different things for different constraint checking requests:

- the activity id of a command in a schedule
- the line number of a command in a procedure
- the buffer location of a command in an RTS load
 contents file
- the PDB activity definition id

3-119 305-CD-042-001

EcTInt mySoftHardFlag

Indicates if the violatin is hard or soft

RWCString myViolationInfo

Textual description of the violation for messaging

Include Files

FoMsCMSStatus.h

Preprocessor Macros

_FoMsStatusComplete_h_

Types

class FoMsStatusComplete
Represents a good status from constraint checking or load generation

Base Classes

public FoMsCMSStatus

Include Files

FoMsCMSStatus.h

Preprocessor Macros

_FoMsStatusFailed_h_

Types

class FoMsStatusFailed
Represents a failed status from constraint checking of load generation

Base Classes

public FoMsCMSStatus

Include Files

FoMsCMSStatus.h

Preprocessor Macros

_FoMsStatusPending_h_

Types

class FoMsStatusPending
Represents a pending status from constraint checking This means that the constraint violations found are all soft constraints.
If CMS is processing a DAS, we wait to continue processing of the load until a response is received from planning and sched-
uling. If CMS is processing an RTS load we wait for a response from FUI to continue processing the RTS load.

3-120 305-CD-042-001

Base Classes

public FoMsCMSStatus

Include Files

FoUiInstruction.h

Preprocessor Macros

_FoMsValidateProcReq_h_

Types

class FoMsValidateProcReq
This message allows the user to request command rule-based constraint checking validation for a procedure. The user, FUI,
fills in the necessary information and send the class to the FmMsValidateProcedure proxy.

Base Classes

public FoUiInstruction

Protected Functions

RWCString& GetDirectory(void)

gets myDirectory

RWCString& GetProcName(void)

gets myProcName

EcTVoid SetDirectory(const RWCString&)

sets myDirectory

EcTVoid SetProcName(const RWCString&)

sets myProcName

Private Data

RWCString myDirectory

directory where the procedure for constraint checking is located

RWCString myProcName

procedure name

3-121 305-CD-042-001

3.5 Spacecraft Model
The Spacecraft Model is a persistent process running on the FOS Data Server. It models several
aspects of spacecraft memory, including the ATC buffer, RTS buffers, and data tables. Spacecraft
Model also maintains a binary image of selected portions of spacecraft memory, including the ATC
buffer, RTS buffers, data tables, and SCC flight software.

The ATC buffer model maintained by Spacecraft Model represents the state of the ATC buffer af-
ter a particular ATC load is uplinked. Spacecraft Model maintains one instance of the ATC buffer
model for each ATC load that is generated by CMS. When an ATC load is successfully uplinked
to the spacecraft, Spacecraft Model replaces its current ATC buffer model with the ATC buffer
model that reflects the uplinked load. Each ATC buffer model consists of a list of commands in-
cluding the absolute time tags and location within the ATC buffer for each command. The buffer
model mimics the wraparound feature of the ATC buffer onboard the AM-1 spacecraft. When an
ATC load is being generated, Spacecraft Model uses the ATC buffer model to determine appropri-
ate partitions of the load based on the predicted contents of the ATC buffer following the previous
load. The ATC buffer model is also used in generating ATC command-to-memory map reports and
displays.

The RTS buffer model maintained by Spacecraft Model represents the state of the 128 RTS buffers
onboard AM-1. The RTS buffer model consists of two parts: the RTS load-to-buffer map, which
is a list of the loads most recently uplinked to the 128 buffers; and the RTS command-to-memory
map, which has lists of commands currently loaded in each of the 128 RTS buffers. The RTS load-
to-buffer map and command-to-memory map are used in generating the RTS memory map reports
and displays.

The table model maintained by Spacecraft Model represents the state of the data tables onboard
AM-1. In order for a table to be included in the table model, it must be defined in the FOS database.
The table model consists of a list of tables that are defined in the database and, for each table in the
list, the name of the load most recently uplinked to that table. The table model is used in generating
the table map report.

Spacecraft Model maintains binary ground reference images of the ATC buffer, RTS buffers, data
tables, and SCC flight software. Whenever a load to one of these areas of memory is uplinked
successfully, the corresponding ground reference image is updated from the load image. Also,
Spacecraft Model will update a ground reference image from a load image or dump image on
request. The ground reference images are used in doing dump comparisons and in generating
reports.

3.5.1 Spacecraft Model Context

The CMS Spacecraft Model interfaces with FOS User Interface subsystem, the Data Management
subsystem, the CMS Schedule Controller task, and the CMS load catalog as shown in the
Spacecraft Model Context Diagram (see Figure 3.5-1) and summarized below.

3-122
305-C

D
-042-001

CMS
Schedule
Controller

DMS FUI

CMS
Spacecraft Model

CMS
Load

Catalog

This System

Command List,
Buffer Start Time Request

ATC Buffer Start Time,
ATC Load Data.

Report Requests,
Display Requests,
Update Requests.

CMS Status,
Buffer Lists,

Buffers.
Buffer Models,

Events.

Update Requests,
Delete Requests.

MemoryDump Files,
Table Formats

Figure 3.5-1. Spacecraft Model ontext Diagram

3-123 305-CD-042-001

CMS Schedule Controller:

• Requests the time of the first command in the most recent predicted buffer. Once constraint
checking has passed, Schedule Controller sends the DAS directive list, the requested uplink
window, the time of the first command used to make the load, and the DAS id.

• Receives a list of load data objects, each of which includes the directive list for the ATC
load to be generated, the name of the load, and the updated uplink window for scheduling.

• Sends an update buffer request to update the buffer status to reflect successful load
generation.

CMS Load Catalog:

• Sends a request to update the buffers from predicted to actual.

• In the event of a late change, load catalog sends a request to delete specified predicted ATC
buffer models.

User Interface:

• Sends a request to retrieve a list of available ATC or RTS buffers for display. The user may
then select a specific buffer for the ATC or RTS buffer displays.

• Requests the generation of the map reports for the ATC buffer, RTS buffers, and Tables,
comparison reports, and image reports.

• Requests that the ground image be overwritten with a dump image.

Data Management:

• Receives Events, which are status messages about CMS Spacecraft Model processing

• Checkpoints the ATC and RTS buffers.

• DMS provides the memory dump file and the table formats to Spacecraft Model.

3-124 305-CD-042-001

3.5.2 Spacecraft Model Interfaces

Table 3.5.2. Spacecraft Model Interfaces (1 of 3)

Interface
Service

Interface Class Interface Class
Description

Service
Provider

Service
User

Frequency

Get ATC
Buffer
Start
Time

FmSmMapBuff
er

Proxy between
CMS:Schedule Controller
and CMS: Spacecraft
Model.

CMS:
Spacecraft
 Model

CMS:
Schedule
Controller

1/day

FmMsATCBuffe
rInfo

Contains a list of DAS IDs
and start time of ATC
buffer

Map ATC FmSmMapBuff
er

Proxy Between
CMS:Schedule Controller
and CMS: Spacecraft
Model.

CMS:
Spacecraft
 Model

CMS:
Schedule
Controller

1/day

FmMsLoadData Contains list of directives
for one load.

FmMsATCMap
Request

Request to Map DAS
command list into ATC
buffer model and return a
list of loads.

Delete
Buffers

FmSmMapBuff
er

Proxy Between CMS:
Load Catalog and CMS:
Spacecraft Model.

CMS:
Spacecraft
 Model

CMS:
Load
Catalog

1/week

FmMsDeleteAT
CBuffers

Request to delete buffers.

Update
Buffer

FmSmMapBuff
er

Proxy Between CMS:
Load Catalog and CMS:
Spacecraft Model.

CMS:
Spacecraft
 Model

CMS:
Load
Catalog

5/day

FmMsUpdateB
uffer

Request to update Buffer
from working to predicted
and then to actual.

Generate
Compare
Report

FmMsGenerate
Map

Proxy between FUI and
Spacecraft Model

CMS:
Spacecraft
 Model

FUI:
Control
Window,
Ground
Script
Controller,
 or
Procedure
 Controller

1/month

3-125 305-CD-042-001

Interface
Service

Interface Class Interface Class
Description

Service
Provider

Service
User

Frequency

FoMsCompare
Request

Request to compare two
image files with specified
mask and start address.

FoMsCMSStatu
s

Status of compare
request.

Generate
Image
Report

FmMsGenerate
Map

Proxy between FUI and
Spacecraft Model

CMS:
Spacecraft
 Model

FUI:
Report
Generator

1/month

FoMsImageRpt
Req

Request to publish a
report on a given image
file.

FoMsCMSStatu
s

Status of report request.

Generate
Map
Report

FmMsGenerate
Map

Proxy between FUI and
Spacecraft Model

CMS:
Spacecraft
 Model

FUI:
Report
Generator

1/week

FoMsGenMapR
equest

Publish a report on the
given buffer locations
(RTS or ATC).

FoMsCMSStatu
s

Status of report request.

Build
Table
Load
Contents
from
Dump

FmMsGenerate
Map

Proxy between FUI and
Spacecraft Model

CMS:
Spacecraft
 Model

FUI: Table
Builder

5/day

FoMsTableData
Req

Request to import dump
image for table load
contents building

FoLiLoadConte
nts

Generated Table load
contents

Overwrite
Ground
Image

FmMsGenerate
Map

Proxy between FUI and
Spacecraft Model

CMS:
Spacecraft
 Model

FUI:
Control
Window

5/day

FoMsImageOve
rWrite

Dump image and location
to overwrite

Table 3.5.2. Spacecraft Model Interfaces (2 of 3)

3-126 305-CD-042-001

Interface
Service

Interface Class Interface Class
Description

Service
Provider

Service
User

Frequency

FoMsCMSStatu
s

Status of overwrite
request.

Provide
Buffer
Informatio
n

FmMsGenerate
Map

Proxy between FUI and
Spacecraft Model

CMS:
Spacecraft
 Model

FUI:
ATCBuffer
Display or
RTSBuffer
Display

1/week

FmMsBufferRe
quest

Request for buffer
information

Provide
Buffer List

FmMsGenerate
Map

Proxy between FUI and
Spacecraft Model

CMS:
Spacecraft
 Model

FUI:
ATCBuffer
Display or
RTSBuffer
Display

1/week

FmMsBufferList
Request

Request for all buffers of
specified type (ATC,
RTS).

Retrieve
ATC
Buffer

FmMsGenerate
Map

Proxy between FUI and
Spacecraft Model.
Request for named ATC
Buffer.

CMS:
Spacecraft
 Model

FUI:
ATCBuffer
Display

5/day

Archive
Buffer
Model

FoFdArchive Proxy between DMS and
CMS: Spacecraft
requesting archiving of the
buffer model

DMS: File
Manager

CMS:
Spacecraf
t

1/day

Send
Events

FoFdEventLogg
er

Proxy between DMS and
CMS: Spacecraft
requesting broadcast of a
message

DMS:
Event
Logger

CMS:
Spacecraf
t

10/day

Get
Table
Format

FoFdGetTableF
ormat

Proxy between DMS and
CMS: Spacecraft
requesting a table format

DMS:
Sybase

CMS:
Spacecraf
t

1/day

Table 3.5.2. Spacecraft Model Interfaces (3 of 3)

3-127 305-CD-042-001

3.5.3 Spacecraft Model Object Model

FmSmSpacecraftModel manages the spacecraft buffer modeling (see Figure 3.5-2 through 3.5-7).
It manages the ATC buffer model, the RTS buffer models, the Table buffer models and the ground
images. FmSmSpacecraftModel receives the FmMsATCMapRequest from the CMS Schedule
Controller. When an FmMsATCMapRequest is received FmSmSpacecraftModel creates an
FmSmATCBufferModel object from the most recent predicted FmSmATCBufferModel. In the
event of a late change, FmSmSpacecraftModel will delete the predicted FmSmATCBufferModels
from the available list. FmSmSpacecraftModel is responsible for archiving expired
FmSmATCBufferModels with DMS, and retrieves the buffers upon a FUI request. The
FmSmRTSBufferModel and FmSmTableModel are updated when an FmMsUpdateBuffer. At that
point the FmSmRTSBufferModel affected will map the command list into the
FmSmRTSBufferModel; it is also at this point that the FmSmGroundImage is updated. The RTS
FoLiLoadImage is written into the ground image, FmSmRTSImage. FmSmTableModel updates
are handled similarly to the FmSmRTSBufferModel. When an FmMsUpdateBuffer is received the
FmSmTables are updated with the correct data values and the FmSmGroundImage,
FmSmTableImage is updated with the FoLiLoadImage.

FmSmATCBufferModel determines the number of command locations available in the buffer,
determines the uplink window for the load, determines if a DAS needs to be partitioned into more
than one load, keeps activities from being split, adds safe commands to the end of the load, updates
the FmSmATCBufferModel status from working to predicted to actual to previous, and generates
an FoRpMapReport upon request. For each partitioned load, FmSmATCBufferModel returns
FmMsLoadData.

FmSmRTSBufferModel manages all of the FmSmRTSBuffers. It requests the particular
FmSmRTSBuffer to produce its FoRpMapReport, it retrieves the requested FmSmRTSBuffer, and
requests the FmSmRTSBuffer to update itself.

FmSmRTSBuffer represents a single RTS buffer. It generates its FoRpMapReport and updates the
FmSmRTSBuffer with the RTS FoLiLoadContents.

3-128
305-C

D
-042-001

FoFdEventLogger

FmSmSpacecraftModel

CsIfMessageHandler

FmMsGenerateMap

FmSmMapBuffer

FoFdArchive

FoFdGetTableFormat

Connect()
Disconnect()
Receive()
Send()

ArchiveATCBuffer(const RWCString, const EcTInt)
ConvertDumpToBinaryImage(const RWCString)
ProcessImageReport(const FoMsImageRptReq&)
CreateATCBuffer(const FmMnDirectiveList&, const FOSTimeInterval&, const EcTInt)
DeleteATCBuffers(const FmMsDeleteATCBuffers&)
GetRecentBuffer(EcTVoid)
HandleMessage(const RWCollectable&)
Initialize(EcTVoid)
ProcessCompareRequest(const FmMsCompareRequest&)
ProcessMapReq(const FoMsGenMapReqest&)
ProcessMemoryDump(const FmMsDumpReportReq&)
ProcessTableDump(const FmMsTableDumpReq&)
RetrieveATCBuffer(const RWCString&)
RetrieveBuffer(const FmMsBufferRequest&)
RetrieveBufferList(const FmMsBufferListRequest&)
SendEventMessage(const RWCString&)
UpdateATCModel(const RWCString&)
UpdateBuffer(const FmMsUpdateBuffer&)
UpdateRTSModel(const FmMsUpdateBuffer&)
UpdateTableModel(const FmMsUpdateBuffer&)

CONTINUED

CONTINUED

Proxy with FUI

Proxy with Schedule Controller

FoTiMemoryDump

FoLiLoadImage

 +
 +
 +
 +

 + : EcTVoid
 + : FmSmImage&
 + : EcTVoid
 + : RWSlistCollectable&
 + : EcTVoid
 + : FmSmATCBufferModel&
 + : EcTVoid
 + : EcTVoid
 + : FoMsCMSStatus&
 + : FoMsCMSStatus&
 + : FoMsCMSStatus
 + : EcTVoid
 + : FoSmATCBufferModel&
 + : RWCollectable&
 + : RWSlistCollectable&
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

Sends/Receives
I/FObjectsFor

receives
buffers

receives event
messages

retrieves formats

communicates
with via IPC

communicates
with via IPC

is retrieved
by

retrieves

Figure 3.5-2. Spacecraft Model Object Model (1 of 6)

3-129
305-C

D
-042-001

FmSmATCBufferModel

FmSmSpacecraftModel

FmSmRTSBufferModel

FmSmRTSBuffer

FoSmBufferLocation

FmSmTableModel

FmSmTable

FoRpMapReport

FmMsLoadData

FoFmDataField
FmSmCompareReport

FmSmGroundImage

FmSmATCImage
FmSmRTSImage FmSmTableImage

FmSmImage

FmSmDumpImage

FmSmDumpReport

FmSmMicroLoadImage FmSmFSWImage

CONTINUED
CONTINUED

CONTINUED
CONTINUED

CONTINUED

CONTINUED

CONTINUED

CONTINUED

CONTINUED

CONTINUED

CONTINUED CONTINUED

CONTINUED CONTINUED

CONTINUED CONTINUED

FmSmImageReport

CONTINUED

{shared - FMN,FUI}

created by

generates

Sends

generates

1+

1+

1+

is updated by

creates

Figure 3.5-3. Spacecraft Model Object Model (2 of 6)

3-130
305-C

D
-042-001

myUplinkWindow

FmSmATCBufferModel

FmSmSpacecraftModel

FmSmRTSBufferModel

FmSmRTSBuffer

FoSmBufferLocation

FmMsLoadData

myLocation
mySpaceDirective

myBufferId
myCriticalFlag
myCurrentLoad
myInhibitId

GenerateMapReport(EcTVoid)
UpdateBuffer(const FmMsUpdateBuffer&)
VerifyAuthorization(EcTVoid)

myDASIdList
myEndLoc
myLastCmdLoc
myLoadName
myNumber of SafeCmds
mySafeCommands
myStartLoc
myTime
myType
myUplinkWindow

AddSafeCommands(const EcTInt)
AssignCommandLocations(const EcTInt&, FoEcSpaceDirective&)
BuildBuffer(const FOSTimeInterval&, const FmMnDirectiveList&, EcTInt&,
FmMsLoadData&)
DetermineActForBuffer(const EcTInt, const FmMnDirectiveList&)
DetermineLoad(FmMsLoadData&)
DeterminePartitionUplinkWindow(const FoEcSpaceDirective&, FmMsLoadData&)
DetermineUplinkWindow(const FOSTimeInterval&, const FoEcSpaceDirective,
FmMsLoadData&)
GenerateMapReport(EcTVoid)
LocationsAvailable(const FoEcSpaceDirective&)
Partition(FmMnDirectiveList&, EcTInt&, FmMsLoadData&)
UpdateDirectiveList(FmMnDirectiveList&)
UpdateModel(const RWCString&)

myDirListAddr
myDirectiveList
myLoadName

myNumberOfBuffers

GenerateMapReport(const FoMsGenMapRequest&)
RetrieveBuffer(const EctInt)
UpdateModel(const FmMsUpdateBuffer)

CONTINUED

 - : FOSTimeInterval

{shared - FMN,FUI}

 - : EcTInt
 - : FoEcSpaceDirective

 - : EcTInt
 - : EcTInt
 - : RWCString
 - : EcTInt

 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

 - : RWSlistCollectable
 - : EcTInt
 - : EcTInt
 - : RWCString
 - : EcTInt
 - : FmMnDirectiveList
 - : EcTInt
 - : FOSTimeInterval
 - : EcTInt (previous, working, predicted, actual)
 - : FOSTimeInterval

 + : EcTVoid
 + : EcTInt
 + : EcTInt

 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : EctVoid

 + : EcTVoid
 + : EcTInt&
 + : EctInt
 + : EcTVoid
 + : EcTVoid

 - : EcTInt
 - : FmMnDirectiveList
 - : RWCString

 - : EcTInt

 + : EcTVoid
 + : FmSmRTSBuffer&
 + : EcTVoid

1+

is updated by

created by

1+

1+

Figure 3.5-4. Spacecraft Model Object Model (3 of 6)

3-131
305-C

D
-042-001

FmSmSpacecraftModel

FmSmTableModel

FmSmTable

GenerateMap(const FoMsGenMapRequest&)
RetreiveTable(const RWCString&)
UpdateModel(const FmMsUpdateBuffer&)

FoFmDataField

FmSmCompareReport

FmSmGroundImage

FmSmATCImage

FmSmRTSImage FmSmTableImage

FmSmImage

FmSmDumpImage

FmSmDumpReport

myReportName myReportName

GenerateReport(FmMsImageRptReq)

CompareDumpWithDefaults(RWString)
ConvertDumptoContents(const FoMsTableDataReq&)
GenerateReport(const FmMsImageRptReq&)

myNamemyBufferId

myCurrentLoad
myEndingLocation
myTableFormat
myOwner
mySize
myStartLocation

GenerateMapReport(EcTVoid)
UpdateTable(const FmMsUpdateBuffer&)

FmSmMicroLoadImage FmSmFSWImage

RetrieveRTS(const EcTInt)
RetrieveTable(const RWCString)
UpdateImage(const FmMsUpdateBuffer&)

CONTINUED

FoLiLoadContents

myDataUnits
myDefaultValue
myFieldDescriptor
myFieldNumber
myHighRangeValue
myLowRangeValue
myRangeCheckFlag
myScaleFactor
myTableNumber
myValueBitSize
myValueOverrideFlag
myValueType

ProduceBinary()

FmSmImageReport

myReportName
 + : EcTVoid
 + : FmSmTable&
 + : EcTVoid

 - : RWString - : RWString

 + : EcTVoid

 + : EcTVoid
 + : FoLiLoadContents&
 + : EcTVoid

 - : RWCString - : EcTInt

 - : RWCString
 - : EcTInt
 - : FoFmTableFormat
 - : RWCString
 - : EcTInt
 - : EcTInt

 + : EcTVoid
 + : EcTVoid

 + : FmSmRTSImage&
 + : FmSmTableImage&
 + : EcTVoid

 - : RWCString
 - : <template>
 - : RWCString
 - : EcTInt
 - : <template>
 - : <template>
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : RWCString

 + : RWBitVec

 - : RWCString

generates generates

creates

Figure 3.5-5. Spacecraft Model Object Model (4 of 6)

3-132
305-C

D
-042-001

FmSmSpacecraftModel

FoMsGenMapRequest

FmMsGenerateMap

FoMsCMSStatus

FmMsBufferRequest

FmMsBufferListRequest

FoMsTableDataReq

FoMsCompareReq

FoMsImageRptReq

FoMsImageOverWrite

FoMsCompareMask

myLoadType

myBufferType
myLoadName
myRTSBufferId

myId
myStatus

myEndAddress
myStartAddress

myDumpName
myStartAddres
myStopAddress

myDirectory
myImageName
myReportName

myEndAddress
myImageFile1
myImageFile2
myStartAddress
myType

myDump
myDirectory

CreateConnection(EcTVoid)
DestroyConnection(EcTVoid)
GenerateCompareReport(const FoMsCompareReq&)
GenerateImageReport(const FoMsImageRptReq&)
GenerateMapReport(const FoMsGenMapRequest&)
GetATCBuffers(EcTVoid)
GetRTSBuffers(EcTVoid)
ImportTableDump(const FoMsTableDataReq&)
OverwriteGroundImage(const FoMsImageOverWrite&)
Receive(EcTVoid)
RequestBuffer(const FmMsBufferRequest&)
RequestBufferList(const FmMsBufferListRequest&)
RetrieveATCBuffer(const RWCString&)
RetrieveRTSBuffer(const EcTInt)
Send(const RWCollectable&)

myBufferId
myEndLocation
myLoadName
myMapType
myStartLocation

CONTINUED

proxy with FUI

{shared - FMN,FUI}

 - : enum(ATC, RTS)

 - : enum{ATC,RTS}
 - : RWCString&
 - : EcTInt

 - : EcTInt
 - : RWCString

 - : EcTInt
 - : EcTInt

 - : RWCString
 - : EcTInt
 - : EcTInt

 - : RWCString
 - : RWCString
 - : RWCString

 - : EcTInt
 - : RWCString
 - : RWCString
 - : EcTInt = 0
 - : enum(ATC,RTS,TAB,FWS,MP)

 - : String
 - : String

 + : EcTInt
 + : EcTVoid
 + : FoMsCMSStatus&
 + : FoMsCMSStatus&
 + : FoMsCMSStatus&
 + : RWSlistCollectables&
 + : RWSlistCollectables&
 + : FoLiLoadContents&
 + : FoMsCMSStatus&
 + : FoMsCMSStatus&
 + : RWCollectable&
 + : RWSlistCollectables&
 + : RWCollectable&
 + : RWCollectable&
 + : FoMsCMSStatus&

 - : EcTInt
 - : EcTInt = 2999
 - : RWCString
 - : enum { ATC, RTS }
 - : EcTInt = 0

sends via IPC

is received
via IPC by

is sent via IPC by

is received
via IPC by

is received
via IPC by

is received
via IPC by

sends via IPC

sends
via IPC

sends
via IPC

is received
via IPC by

sends via IPC

sends via IPC

is recieved
via IPC by

is received
via IPC by

sends via
IPC

receives
via IPC

Figure 3.5-6. Spacecraft Model Object Model (5 of 6)

3-133
305-C

D
-042-001

FmSmSpacecraftModel

FmSmMapBuffer

FmMsLoadData

FmMsUpdateBuffer

FmMsATCMapRequest

FmMsDeleteATCBuffers

FmMsATCBufferInfo

myDirListAddr
myDirectiveList
myLoadName
myUplinkWindow

myLoadNames

myDASId
myDirList
myTime
myUplinkWindow

myDASIdList
myTime

myBufferID
myEndLocation
myLoadName
myStartLocation
myTableName
myType

CreateConnection(EcTVoid)
DeleteBuffers(const RWSlistCollectables&)
Destroy(EcTVoid)
GetATCBufStartTime(const FoEcTime&)

MapATC(const FmMnDirectiveList&, const FOSTimeInterval&, const FoEcTime&,
EcTInt)

MapLateChange(const FmMnDirectiveList&, const FOSTimeInterval&, const FoEcTime&,
EcTInt)

Receive(EcTVoid)
Send(const RWCollectable&)
UpdateBuffer(const FmMsUpdateBuffer&)

proxy with ScheduleController & Load Catalog

CONTINUED

 - : EcTInt
 - : FmMnDirectiveList
 - : RWCString
 - : FOSTimeInterval

 - : RWSlistCollectable

 - : EcTInt
 - : FmMnDirectiveList
 - : FoEcTime
 - : FOSTimeInterval

 - : RWSlistCollectable
 - : FoEcTime

 - : EcTInt
 - : EcTInt
 - : RWCString
 - : EcTInt
 - : RWCString
 - : EcTInt

 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : FmMsATCBufferInfo

 + : RWSlistCollectables&

 + : RWSlistCollectables&

 + : RWSlistCollectables&
 + : EcTVoid
 + : EcTVoid

is sent
via IPC

is sent
via IPC creates/

sends via IPC

creates/sends
via IPC

receives
via IPCreceives

via IPC

sends via IPC

Receives
via IPC

receives
via IPC

receives via IPC

Figure 3.5-7. Spacecraft Model Object Model (6 of 6)

3-134 305-CD-042-001

FoSmBufferLocation represents a single buffer location for either an FmSmRTSBuffer or an
FmSmATCBufferModel.

FmSmTableModel manages all of the FmSmTables. It retrieves a particular FmSmTable, requests
FmSmTable to generate its FoRpMapReport and requests the FmSmTable to update its model.

FmSmTable represents a single table. It generates its FoRpMapReport and updates itself with the
with the Table FoLiLoadContents.

FoFmDataField represents a single data field in a FmSmTable.

FmSmImage represents an abstract class for the FmSmGroundImage and the FmSmDumpImage.
A FmSmGroundImage consists of an FmSmRTSImage, an FmSmATCImage, and a
FmSmTableImage. A FmSmDumpImage consists of these three and a FmSmMicroLoadImage
and a FmSmFSWImage.

FmSmGroundImage represents the following spacecraft images: RTS, ATC, and Table. It is
responsible for updating the respective image when an FmMsUpdateBuffer is received.

FmSmDumpImage is responsible for comparing the values in a table dump to their corresponding
default values in DMS, generating a FmSmDumpReport on a specified dump file and for
converting a specified table dump into a FoLiLoadContents. FmSmDumpImage receives
FoMsImageRptReq when generating a FmSmDumpReport and FoMsTableDataReq when
converting a dump to a FoLiLoadContents.

FmSmRTSImage represents an image of a single RTS buffer. This class is used for both the
ground images and the dump images

FmSmATCImage represents an image of the ATC buffer. This class is used for both ground and
dump images

FmSmTableImage represents an image of a single table. This class is used for both ground and
dump images.

FmSmMicroLoadImage represents a dump image for a single microprocessor.

FmSmFSWImage represents a dump image for a single flight software image.

FmSmDumpReport represents the report generated from an FoMsImageRptReq.

FmSmCompareReport represents the report generated from an FoMsCompareReq.

FmMsLoadData includes the information for generating an ATC load. It has the directive list from
the DAS that will fit into the buffer, it includes the uplink window, the load name and the address
of the next command to be included in a partitioned load.

FmMsATCMapRequest includes information for processing the DAS command list. It includes
the DAS Id, the DAS directive list, the time of the first command to be included in the buffer, and
the requested uplink window.

FmMsDeleteATCBuffers is the message received by FmSmSpacecraftModel to delete the
predicted FmSmATCBufferModels.

FmMsUpdateBuffer is sent to FmSmSpacecraftModel to update the status of the
FmSmATCBufferModel, the FmSmRTSBufferModel, the FmSmTableModel. It will update the
FmSmATCBufferModel from a working status buffer to a predicted status buffer and update a
predicted status buffer to the actual FmSmATCBufferModel. The FmSmRTSBufferModel and the

3-135 305-CD-042-001

FmSmTableModel are updated from the FoLiLoadContents. The FmSmGroundImages for the
FmSmATCBufferModel, the FmSmRTSBuffers and the FmSmTables are also updated from this
FmMsUpdateBuffer request.

FmMsATCBufferInfo is sent by FmSmSpacecraftModel in response to a request from CMS
Schedule Controller. It returns information on the most recent predicted FmSmATCBufferModel.
The information returned, the DAS id list of a buffer, and the time of the first command in the
buffer is used for constraint checking the DAS command list about to be processed.

FmSmMapBuffer is a proxy class used internally by CMS. Both CMS Schedule Controller and
CMS Load Catalog incorporate this class. It performs the interprocess communication between
these processes and FmSmSpacecraftModel, allowing the buffers to be created, updated, and
deleted. FmSmMapBuffer creates FmMsATCMapRequest, FmMsDeleteATCBuffers, and
FmMsUpdateBuffer. It receives FmMsLoadData and FmMsATCBufferInfo.

FmMsGenerateMap is a proxy class used by FUI to request information from
FmSmSpacecraftModel model for display and reporting information. It creates
FmMsBufferRequest and FmMsBufferListRequest and receives the following objects:
FoMsTableDataReq, FoMsImageRptReq, FoMsImageOverWrite, FoMsCompareReq and
FoMsGenMapRequest which are sent to FmSmSpacecraftModel. It receives FoMsCMSStatus
from FmSmSpacecraftModel.

FmMsBufferRequest is the class that requests a specific FmSmATCBufferModel or
FmSmRTSBuffer from FmSmSpacecraftModel.

FmMsBufferListRequest is a request to FmSmSpacecraftModel to return the list of available
FmSmRTSBuffers or FmSmATCBufferModels.

FoMsGenMapRequest is a request to FmSmSpacecraftModel to generate a FoRpMapReport for
the specified buffer, either FmSmATCBufferModel, FmSmRTSBuffer(s), or FmSmTable(s).

FoMsTableDataReq is sent from FUI. It is a request from the table load builder to import a table
FoTlMemoryDump and convert it into a table FoLiLoadContents.

FoMsImageOverWrite is sent from FUI. It is a request to overwrite a portion of the
FmSmGroundImage with either a FoLiLoadImage or a FmSmDumpImage.

FoMsImageRptReq is sent from FUI. It is a request to generate an FmSmImageReport.

FoMsCompareReq is sent from FUI. It is a request to generate a FmSmCompareReport. The user
can compare any two image files.

FoMsCompareMask is part of FoMsCompareReq. It allows the user to select a portion of the
image files not to compare.

3-136 305-CD-042-001

3.5.4 Spacecraft Model Dynamic Model

The Spacecraft Model had the following scenarios:

• Initialization

• ATC Load Generation

• ATC Buffer Model Update

• ATC Buffer Model Deletion

• ATC Buffer Display Request

• RTS Buffer Display Request

• Map Report Generation

• Image Report Generation

• Compare Report Generation

• Table Model & Image Update

• RTS Buffer Model & Image Update

• ATC Buffer Model & Image Update

• Flight Software Image Update

• Table Data Request

• Ground Image Overwrite

3.5.4.1 Initialization Scenario

3.5.4.1.1 Initialization Scenario Abstract

This scenario occurs when the Spacecraft Model process is started (see Figure 3.5-8). It addresses
the initialization of the Spacecraft interfaces and loading of configuration files.

3.5.4.1.2 Initialization Summary Information

Interfaces:

• DMS

Stimulus:

• Spacecraft Model process is started

3-137
305-C

D
-042-001

FmSmSpacecraftModel DMS

request connection

request configuration & startup files

listen for
other

connections

read configuration & startup files

Figure 3.5-8 . Spacecraft Model Initialization Event Trace

3-138 305-CD-042-001

Desired Response:

• Spacecraft Model is up and running

Pre-Conditions:

• DMS software has been initiated

Post-Conditions:

• Spacecraft Model is ready to process requests

3.5.4.1.3 Initialization Scenario Description

When the Spacecraft Model is started FmSmSpacecraftModel will initialize its interfaces by
requesting address information from the Name Server. Once the interface connections have been
made FmSmSpacecraftModel will read in the current list of ATC buffers, RTS buffers, tables,
ground images and it will read in the "safe" commands from DMS.

3.5.4.2 ATC Load Generation Scenario

3.5.4.2.1 ATC Load Generation Scenario Abstract

The ATC Load Generation scenario describes the receipt and processing of an Expanded Directive
List from CMS Schedule Controller (FmScScheduleController) via FmMsValidateConstraints
proxy (see Figure 3.5-9).

3.5.4.2.2 ATC Load Generation Summary Information

Interfaces:

• CMS Schedule Controller

Stimulus:

• Receipt of DAS Expanded Directive List

Desired Response:

• ATC commands are mapped into the buffer

Pre-Conditions:

• Schedule controller software has been initiated

• Spacecraft model software has been initiated

Post-Conditions:

• Working ATC Buffer Model is created.

3-139
305-C

D
-042-001

CMS Schedule
Controller FmSmSpacecraft FmSmATCBufferModel

FmSmMapBuffer
(internal Proxy for CMS)

sends start time
of DAS

returns start timefor
Constraint Checking

creates

returns partitions

requests time to start
Constraint Checking

returns list of partioned ATC loads

request command mapping

returns start time for
constraint checking

requests map

returns
buffer

maps

Figure 3.5-9. Spacecraft Model ATC Load Generation Event Trace

3-140 305-CD-042-001

3.5.4.2.3 ATC Load Generation Scenario Description

The Spacecraft Model receives a request via FmSmMapBuffer to determine the buffer that the new
DAS being processed will be input. The start time of this buffer is returned to the CMS Schedule
Controller so that the DAS can be constraint checked. The constraint free expanded directive list
from the DAS is sent to the Spacecraft Model from the Schedule Controller. The Spacecraft
Model sends the directive list to the ATC buffer, which maps the commands into the buffer and
determines the uplink window. For each partition a FmMsLoadData is returned.

3.5.4.3 ATC Buffer Model Update Scenario

3.5.4.3.1 ATC Buffer Model Update Scenario Abstract

The Spacecraft Model receives an Update Buffer request from the CMS Schedule controller or
CMS Load Catalog. Based on the request the ATC buffer status is updated from a working buffer
to a predicted buffer or from a predicted buffer to and actual buffer. When the request is received
that changes the status from predicted to actual, the current actual buffer is updated to previous
status (see Figure 3.5-10).

3.5.4.3.2 ATC Buffer Model Update Summary Information

Interfaces:

• CMS Schedule

• CMS Load Catalog

Stimulus:

• Receipt of Update Buffer request

Desired Response:

• Buffer model is updated to reflect new status

Pre-Conditions:

• Schedule Controller software has been initiated

• Load Catalog software has been initiated

• Spacecraft model software has been initiated

Post-Conditions:

• ATC Buffer Models are updated

3-141
305-C

D
-042-001

CMS Schedule
Controller DMSFmSmSpacecraft

FmSmMapBuffer
(internal Proxy for CMS)FmLdLoadCatalog

archives
expired
buffers

requests update of
predicted buffer to actual

requests udate of
working buffer to

predicted

updates buffer

Figure 3.5.10. Spacecraft Model ATC Buffer Model Update Event Trace

3-142 305-CD-042-001

3.5.4.3.3 ATC Buffer Model Update Scenario Description

The ATC Buffer Model Update scenario describes the receipt of an FmSmUpdateBuffer request
from either CMS Schedule Controller or CMS Load Catalog via FmSmMapBuffer proxy. The
Spacecraft Model receives a request via FmSmMapBuffer.

When the new load is successfully generated, the CMS Schedule Controller requests that the
working buffer be updated to predicted buffer status. When the load is successfully uplinked, the
CMS Load Catalog requests that the buffer be updated to be the actual buffer model.

3.5.4.4 ATC Buffer Model Deletion Scenario

3.5.4.4.1 ATC Buffer Model Deletion Scenario Abstract

The Spacecraft Model receives the request to delete ATC buffers from CMS Load Catalog via
FmSmMapBuffer proxy (see Figure 3.5-11). The request is made as a result of a late change. The
predicted status ATC buffers are deleted.

3.5.4.4.2 ATC Buffer Model Deletion Summary Information

Interfaces:

• CMS Load Catalog

Stimulus:

• Receipt of Buffer Delete Request

Desired Response:

• Buffer(s) are deleted

Pre-Conditions:

• CMS Load Catalog software has been initiated

• Spacecraft model software has been initiated

Post-Conditions:

• Predicted status ATC buffer models are deleted

3.5.4.4.3 ATC Buffer Model Deletion Scenario Description

CMS Load Catalog requests ATC Buffer deletion via the FmMsMapBuffer proxy. The Spacecraft
Model deletes the predicted ATC buffer models.

3.5.4.5 ATC Buffer Display Scenario

3.5.4.5.1 ATC Buffer Display Scenario Abstract

The Spacecraft Model receives the requests to provide a buffer list and to provide a specified buffer
based on a selection from that list (see Figure 3.5-12). This information is used by FUI to provide
the ATC buffer display for the user.

3-143
305-C

D
-042-001

CMS Load
Catalog FmSmSpacecraft FmSmATCBufferModel

FmSmMapBuffer
(internal Proxy for CMS)

deletes buffer

request predicted
buffer deletion

requests
deletion

Figure 3.5-11. Spacecraft Model ATC Buffer Model Deletion Event Trace

3-144
305-C

D
-042-001

FUI FmSmGenerateMap

{Proxy with FUI}

FmSmSpacecraft FmSmATCBufferModel

request buffer
list

sends
FmMsBufferListRequest

returns list

returns list

requests specific
buffer

sends
FmMsBufferRequest

retrieves buffer

returns buffer

returns buffer

Figure 3.5-12. Spacecraft Model ATC Buffer Display Event Trace

3-145 305-CD-042-001

3.5.4.5.2 ATC Buffer Display Summary Information

Interfaces:

• FUI

Stimulus:

• Receipt of Buffer List Request

• Receipt of Buffer Request

Desired Response:

• Buffer list is returned for display

• Buffer is returned for display

Pre-Conditions:

• Spacecraft Model software has been initiated

Post-Conditions:

• None

3.5.4.5.3 ATC Buffer Display Scenario Description

FUI sends requests via the FmMsGenerateMap proxy. The ATC buffer display will first request a
list of available ATC buffers, then it will request a specific buffer for display. The ATC buffer list
is the list of predicted and actual status ATC buffers.

3.5.4.6 RTS Buffer Display Scenario

3.5.4.6.1 RTS Buffer Display Scenario Abstract

The Spacecraft Model receives the requests to provide a buffer list and to provide a specified buffer
based on a selection from that list (see Figure 3.5-13). This information is used by FUI to provide
the RTS buffer display for the user.

3.5.4.6.2 RTS Buffer Display Summary Information

Interfaces:

• FUI

Stimulus:

• Receipt of Buffer List Request

3-146
305-C

D
-042-001

FUI FmSmGenerateMap
{Proxy with FUI}

FmSmSpacecraft FmSmRTSBufferModel FmSmRTSBuffer

request buffer
list

sends
FmMsBufferListRequest

returns list

returns list

requests specific
buffer

sends
FmMsBufferRequest

requests buffer

returns buffer

returns buffer

retrieves buffer

returns buffer

returns buffer

Figure 3.5-13. Spacecraft Model RTS Buffer Display Event Trace

3-147 305-CD-042-001

• Receipt of Buffer Request

Desired Response:

• Buffer list is returned for display

• Buffer is returned for display

Pre-Conditions:

• Spacecraft Model software has been initiated

Post-Conditions:

• None

3.5.4.6.3 RTS Buffer Display Scenario Description

FUI sends requests via the FmMsGenerateMap proxy. The RTS buffer display will first request a
list of available RTS buffers, then it will request a specific buffer for display. This list of available
RTS buffers is all of the 128 AM-1 RTS buffers.

3.5.4.7 Map Report Generation Scenario

3.5.4.7.1 Map Report Generation Scenario Abstract

The Spacecraft Model receives the request to generate a map report (see Figure 3.5-14).

3.5.4.7.2 Map Report Generation Summary Information

Interfaces:

• FUI

• DMS

Stimulus:

• Receipt of Map Report Generation Request

Desired Response:

• Map Report is generated for specified Model (ATC, RTS or Table)

Pre-Conditions:

• Spacecraft model software has been initiated

Post-Conditions:

• Report is generated and stored in requested location.

3-148
305-C

D
-042-001

FmSmGenerateMap
(proxy)FUI FmSmSpacecraftModel DMS

FmSmATCBufferModel

FmSmRTSBuffer FmSmTable

sends generate
report request

sends request

processes
request

request ATC map
report

request RTS map report

request Table map report

stores reports

Figure 3.5-14. Spacecraft Model Map Report Event Trace

3-149 305-CD-042-001

3.5.4.7.3 Map Report Generation Scenario Description

FUI send a request to generate a Map report via the FmMsGenerateMap proxy. The
FmSmSpacecraftModel model requests the ATC buffer model, RTS buffer model or Table model
to produce the report.

3.5.4.8 Image Report Generation Scenario

3.5.4.8.1 Image Report Generation Scenario Abstract

The Spacecraft Model receives the request generate an image report (see Figure 3.5-15).

3.5.4.8.2 Image Report Generation Summary Information

Interfaces:

• FUI

Stimulus:

• Receipt of Image report request

Desired Response:

• Image report is generated for specified ground image (ATC, RTS, or Table)

Pre-Conditions:

• Spacecraft model software has been initiated

Post-Conditions:

• None

3.5.4.8.3 Image Report Generation Scenario Description

FUI sends an Image report request via the FmMsGenerateMap proxy. Spacecraft model retrieves
the proper image and produces the report.

FUI sends an Image overwrite request to the Spacecraft model via the FmMsGenerateMap proxy.
The appropriate ground image is overwritten with the specified dump image.

3.5.4.9 Compare Report Generation Scenario

3.5.4.9.1 Compare Report Generation Scenario Abstract

The spacecraft model receives the request generate a comparison report (see Figure 3.5-16). The
compare can be performed on any combination of images: load and ground.

3.5.4.9.2 Compare Report Generation Summary Information

Interfaces:

• FUI

3-150
305-C

D
-042-001

FmSmGenerateMap
(proxy)FUI

FmSmImageFmSmSpacecraftModel DMS

FmSmATCImage

FmSmRTSImage
FmSmTableImage

sends generate
report request

sends request

request image
report

processes
request

request ATC image
report

request RTS image report

request Table image report

stores reports

Figure 3.5-15. Spacecraft Model Image Report Event Trace

3-151
305-C

D
-042-001

FmSmGenerateMap
(proxy)FUI

FmSmSpacecraftModel
DMSFmSmImage

sends generate
report request

retrieve images

stores reports

compare &
build
report

send event message

send status

sends request

Figure 3.5-16. Spacecraft Model Compare Report Event Trace

3-152 305-CD-042-001

Stimulus:

• Receipt of Compare request

Desired Response:

• Compare report is generated

Pre-Conditions:

• Spacecraft model software has been initiated

Post-Conditions:

• Compare report is generated and stored in requested location.

3.5.4.9.3 Compare Report Generation Scenario Description

FUI sends a Compare request to the Spacecraft model via the FmMsGenerateMap proxy.
FmSmSpacecraftModel compares two image files and produces a report.

3.5.4.10 Table Model & Image Update Scenario

3.5.4.10.1 Table Model & Image Update Scenario Abstract

The spacecraft model receives the update buffer message from the CMS Load Catalog, queries the
Table model to retrieve the correct table and updates the table model with the load contents (see
Figure 3.5.17). Once the table model is updated the ground image is updated to reflect the new
data. The Ground Image retrieves the correct table image and updates it with the specified table
load image file.

3.5.4.10.2 Table Model & Image Update Summary Information

Interfaces:

• CMS Load Catalog

Stimulus:

• Receipt of Update Buffer Request

Desired Response:

• Table model is updated to reflect load content data field values

• Table ground image is updated

Pre-Conditions:

• Load Catalog software has been initiated

• Spacecraft model software has been initiated

Post-Conditions:

• None

3-153
305-C

D
-042-001

FmSmMapBuffer
(proxy)CMS Load Catalog FmSmGroundImageFmSmSpacecraftModel FmSmTableModel FmSmTable FmSmTableImage

sends update buffer
request message

processes update buffer request

request ground image
update

sends update buffer
messages

retrieves table

updates
model

retrieves table ground image

updates ground image with load image

Figure 3.5-17. Spacecraft Model Table Model & Image Update Event Trace

3-154 305-CD-042-001

3.5.4.10.3 Table Model & Image Update Scenario Description

The table model & image update scenario describes the receipt and processing of an update buffer
request from CMS Load Catalog via FmSmMapBuffer proxy. When the load is successfully
uplinked the table model is updated. The Spacecraft Model receives a request via
FmSmMapBuffer to determine the table that the uplink load affects. Once the table model is
updated, the table ground image is updated. FmSmGroundImage retrieves the appropriate table
and updates the image with the load image file produced by FoLiLoad.

3.5.4.11 RTS Buffer Model & Image Update Scenario

3.5.4.11.1 RTS Buffer Model & Image Update Scenario Abstract

The spacecraft model receives the update buffer message from the CMS Load Catalog, queries the
RTS model to retrieve the correct RTS buffer and updates the RTS buffer with the load contents,
which is the directive list (see Figure 3.5-18). Once the RTS buffer is updated the ground image
is updated to reflect the new data. The Ground Image retrieves the correct RTS buffer image and
updates it with the specified RTS load image file.

3.5.4.11.2 RTS Buffer Model & Image Update Summary Information

Interfaces:

• CMS Load Catalog

Stimulus:

• Receipt of Update Buffer Request

Desired Response:

• RTS Buffer model is updated to reflect load content

• RTS buffer ground image is updated

Pre-Conditions:

• Load Catalog software has been initiated

• Spacecraft model software has been initiated

Post-Conditions:

• None

3-155
305-C

D
-042-001

FmSmMapBuffer
(proxy)CMS Load Catalog FmSmGroundImageFmSmSpacecraftModel FmSmRTSBufferModel FmSmRTSBuffer FmSmRTSImage

sends update buffer
request message

processes updae buffer request

request ground image
update

sends update buffer
message

retrieves RTS Buffer

updates
buffer

retrieves RTS buffer ground image

updates ground image with load image

Figure 3.5-18. Spacecraft Model RTS Model & Image Update Event Trace

3-156 305-CD-042-001

3.5.4.11.3 RTS Buffer Model & Image Update Scenario Description

The RTS buffer model & image update scenario describes the receipt and processing of an update
buffer request from CMS Load Catalog via FmSmMapBuffer proxy. When the load is successfully
uplinked the RTS buffer model is updated. The Spacecraft Model receives a request via
FmSmMapBuffer to determine the RTS buffer that the uplink load affects. Once the RTS buffer
is updated, the RTS buffer ground image is updated. FmSmGroundImage retrieves the appropriate
RTS buffer and updates the image with the load image file produced by FoLiLoad.

3.5.12.1 Table Data Request Scenario

3.5.12.1.1 Table Data Request Scenario Abstract

The spacecraft model receives the Table Data Request from the FUI, retrieves the table dump and
table format from DMS, reverse-engineers the dump data into load contents and returns the load
contents to FUI (see Figure 3.5-19).

3.5.12.1.2 Table Data Request Summary Information

Interfaces:

• FUI

• DMS

Stimulus:

• Receipt Table Data Request

Desired Response:

• Table dump is reverse-engineered to table load contents

Pre-Conditions:

• Schedule controller software has been initiated

Post-Conditions:

• Table load contents are created for use in FUI's table builder

3.5.4.12.3 Table Data Request Scenario Description

The table data request receipt scenario describes the receipt and processing of a
FoMsTableDataReq from FUI via FmSmGenerateMap proxy (see Figure 3.5-20). The Spacecraft
Model receives the request via FmSmGenerateMap to determine the table dump that is used to
create the load contents. The EDU header information is stripped from the Dump data, then the
binary dump data is extracted according to the FoFmTableFormat retrieved from DMS. The load
contents are created and returned to FUI.

3-157
305-C

D
-042-001

FmSmGenerateMap
(proxy)FUI FmSmSpacecraftModel

DMS

FmSmDumpImage

sends table
data request

sends request

return load
contents

sends request

requests table
format

sends format

convert
dump

return load
contents

return load
contents

Figure 3.5-19. Spacecraft Model Table Data Request Event Trace

3-158
305-C

D
-042-001

FmSmGenerateMap
(proxy)FUI FmSmGroundImageFmSmSpacecraftModel DMS

GROUND IMAGE OVERWRITE

sends ground image
overwrite request

sends request with dump file

sends request

retrieves
specified

ground image

request dump file

sends dump file

overwrites
ground image

with dump image

Figure 3.5-20. Spacecraft Model Ground Image Overwrite Event Trace

3-159 305-CD-042-001

3.5.4.13 Ground Image Overwrite Receipt Scenario

3.5.4.13.1 Ground Image Overwrite Receipt Scenario Abstract

The spacecraft model receives the ground image overwrite request from the FUI, overwrites the
specified ground image with the load image.

3.5.4.13.2 Ground Image Overwrite Summary Information

Interfaces:

• FUI

Stimulus:

• Receipt of Ground Image Overwrite request

Desired Response:

• Change ground image to reflect request

Pre-Conditions:

• Schedule controller software has been initiated

Post-Conditions:

• Ground Image is overwritten

3.5.4.13.3 Ground Image Overwrite Scenario Description

The spacecraft model receives the ground image overwrite request, FoMsImageOverWrite from
the FUI via FmMsGenerateMap proxy. FmSmGroundImage retrieves the specified ground image:
either the ATC image, one of the RTS images or one of the Table images. FmSmGroundImage
then overwrites the specified ground image with the either the specified load image or the specified
dump image.

3-160 305-CD-042-001

3.5.5 Spacecraft Model Data Dictionary

Preprocessor Macros

_FmMsATCBufferInfo_h_

Types

class FmMsATCBufferInfo
This class represent the information returned to the proxy upon the complete processing of a GetATCBufStartTime. The time
and the DAS id list are used to determine the commands necessary for constraint checking

Public Functions

RWSlistCollectables& GetDASList(EcTVoid)

Gets myDASIdList

FoEcTime& GetTime(EcTVoid)

Gets myTime

EcTVoid SetDASList(const RWSlistCollectables&)

Sets myDASList

EcTvoid SetTime(const FoEcTime&)

Sets myTime

Private Data

RWSlistCollectable myDASIdList

The list of DAS id's associated with the buffer being used to construct the new buffer for the new DAS processing request

FoEcTime myTime

The time of the 1st command in the buffer used to start the list for constraint checking.

Preprocessor Macros

_FmMsBufferListRequest_h_

Types

class FmMsBufferListRequest

Public Functions

EcTInt GetType(EcTVoid)

Gets myLoadType

EcTVoid SetType(const EcTInt)

Sets myLoadType

Private Data

LoadType myLoadType

Type of buffer list to be returned

enum LoadType
Enumeration of load types

3-161 305-CD-042-001

Enumerators

ATC
RTS

Preprocessor Macros

_FmMsBufferRequest_h_

Types

class FmMsBufferRequest
This is a request for a specific buffer.

Protected Functions

EcTInt GetBufferId(EcTVoid)

GetsmyRTSBufferID

EcTInt GetBufferType(EcTVoid)

Gets myBufferType

RWCString& GetName(EcTVoid)

Gest myLoadName

EcTVoid SetBufferId(const EcTInt)

Sets myRTSBufferId

EcTVoid SetBufferType(const EcTInt)

Sets myBufferType

EcTVoid SetName(const RWCString&)

Sets myLoadName

Private Data

enum myBufferType

RWCString& myLoadName

If the buffer type is ATC the load name is need to retrieve the buffer

EcTInt myRTSBufferId

If the buffer type is RTS the RTS buffer id is need to retrieve the buffer

Private Types

enum

The buffer type being requested

3-162 305-CD-042-001

Enumerators

ATC
RTS

Preprocessor Macros

_FmMsDeleteATCBuffers_h_

Types

class FmMsDeleteATCBuffers
This class represents a request to delete buffers It is only used when a late change is processed.

Protected Functions

RWSlistCollectable& GetList(EcTVoid)

Gets myLoadNames

EcTVoid SetList(const RWSlistCollectables&)

Sets myLoadNames

Private Data

RWSlistCollectable myLoadNames

The load names that are associated with the buffers, its is uses as a buffer id

Preprocessor Macros

_FmMsGenerateMap_h_

Types

class FmMsGenerateMap
This class represents the interface proxy class between FUI and the CMS FmSmSpacecraft class. FmSmSpacecraft manages
the modelling for the ATC buffer, the RTS buffer, the table buffers and the ground imaging.

Public Functions

EcTInt CreateConnection(void)

Establishes a connection with FmSmSpacecraft to receive the Generate map report request.

EcTVoid DestroyConnection(void)

Destroyes the connections with FmSmSpacecraft

EcTVoid GenerateCompareReport(EcTVoid)

FUI invokes this function to generate a Compare report

FoMsCMSStatus& GenerateImageReport(const FoMsImageRptReq&)

FUI invokes this function to generate an Image report

FoMsCMSStatus& GenerateMapReport(const FoMsGenMapRequest&)

FUI invokes this function to generate an ATC or RTS map report

RWSlistCollectables& GetATCBuffers(EcTVoid)

FUI invokes this function to retrieve all the ATC buffers

RWSlistCollectables& GetRTSBuffers(EcTVoid)

FUI invokes this function to retrieve all the RTS buffers

3-163 305-CD-042-001

FoLiLoadContents& ImportTableDumpt(const FoMsTableDataReq&)

ImportTableDump is called to retrieve the table dump and convert it into a table load contents file for editing

foMsCMSStatus& OverwriteGroundImage(const FoMsImageOverWrite&)

ground image be overwritten with the specified portion of the input image

FoMsCMSStatus& Receive(void)

Receives the results of the report generation

RWCollectable& RequestBuffer(const FmMsBufferRequest&)

RetrieveATCBuffer and RetrieveRTSBuffer call this function to request the FmSmSpacecraft model to return the appro-
priate buffer

RWSlistCollectables& RequestBufferList(const FmMsBufferListRequest&)

GetATCBuffers and GetRTSBuffers call this function to request the appropriate list of buffers from FmSmSpacecraft
model

FmSmATCBufferModel& RetrieveATCBuffer(const RWCString&)

FUI invokes this function to request a specific ATC buffer

FmSmRTSBuffer& RetrieveRTSBuffer(const EcTInt&)

FUI invokes this function to request specific RTS buffer

FoMsCMSStatus& Send(const RWCollectable&)

Sends the report request to FmSmSpacecraft

Preprocessor Macros

_FmMsLoadData_h_

Types

class FmMsLoadData
This class is sent to CMS Schedule controller. From this class the ATC load directives are used to create the ATC binary uplink
load. If the DAS needs to be partitioned multiple FmMsLoadData objects are returned to CMS Schedule Controller.

Protected Functions

EcTInt GetAddr(EcTVoid)

Returns the address of the next command in the directive list that is being processed

FmMnDirectiveList& GetDirectiveList(EcTVoid)

Returns the directive to be used to create the ATC load

RWCString& GetLoadName(EcTVoid)

Returns the Load name for the ATC load

FmMnDirectiveList& GetUplinkWindow(EcTVoid)

Returns the uplink window for the ATC load directive list

EcTVoid SetAddr(const EcTInt)

Sets the address to the next directive in the directive list that is being processed

EcTVoid SetDirectiveList(const FmMnDirectiveList&)

Sets myDirectiveList to the list used for creating the ATC load

EcTVoid SetLoadName(const RWCString&)

Sets the load name

3-164 305-CD-042-001

EcTVoid SetUplinkWindow(const FOSTimeInterval&)

Sets the uplink window

Private Data

EcTInt myDirListAddr

This is the next directive in the processing list. If the list is completely processed the is set to NULL. If the list requires
further processing, that is the DAS/ ATC load need to be partitioned, it is set to the next directive in the list. This is where
the partitioned load needs to begin.

FmMnDirectiveList myDirectiveList

This is the portion of the DAS/ATC directive list being currently processed that will be used to create the ATC binary
uplink load It may be all of the DAS or part of the DAS if the ATC buffer cannot hold all of the commands - that is the
DAS is being partitioned

RWCString myLoadName

This is the load name create by ATC buffer model

FOSTimeInterval myUplinkWindow

This is the uplink window for the ATC uplink directive list

Preprocessor Macros

_FmMsUpdateBuffer_h_

Types

class FmMsUpdateBuffer
This class represents a message from the CMS load catalog to update the ATC/RTS buffers. It is sent from the load catalog
when an uplink verification is received from the Command Subsystem It is also used to update the ground image.

Public Functions

RWCString& GetName(EcTVoid)

Returns the load name that is associated with the ATC load buffer

EcTInt GetType(EcTVoid)

Returns the type of buffer to be updated, ATC or RTS

EcTVoid SetName(const RWCString&)

Sets myLoadName

EcTVoid SetType(const EcTInt)

Sets the type of buffer to be updated, myType

Private Data

EcTInt myBufferID

Represent the buffer number that needs to be updated, pertains to RTS buffer number

EcTInt myEndLocation

Represent the End location in the buffer

RWCString myLoadName

Represents the load that was uplinked

EcTInt myStartLocation

Represents the start location in the buffer

3-165 305-CD-042-001

RWCString myTableName

Represents the the table name for the buffer update

EcTInt myType

represents the type of buffer affected by the uplink

Preprocessor Macros

_FmSmATCBufferModel_h_

Types

class FmSmATCBufferModel
Represent a buffer model of the ATC buffer. There are multiple buffer models. The buffer models are used to determine the
starting directive to be used for constraint checking. For this purpose a "previous" buffer models are kept. This previous buffer
model will be used to constraint check late changes. Once all the commands in the buffer model are executed, the buffer is
archived and removed from the active list of ATC buffer models.

There is one "actual" buffer model. This represents what is currently loaded to the spacecraft. When an FmMsUpdateBuffer
is received by FmSmSpacecraft the "actual" buffer model is moved to the "previous" buffer model.

Finally, there are multiple "predicted" buffer models. These are used for constraint checking also. Because CMS performs
most of its functionality in advance we are predicting what we expect the actual buffer model to be and using the "most recent
predicted buffer model" for constraint checking and determining what the new buffer model will be. When an FmMsUpdate-
Buffer is received by FmSmSpacecraft the "predicted" buffer model with the specified load name is moved to the "actual" buff-
er model.

Public Functions

EcTVoid AddSafeCommands(const FmMnDirectiveList&)

Adds the safe commands to the end of the buffer and load directive list

FmMsLoadData& AssignCommandLocations(const FmMnDirectiveList&)

Assigns the directives to a buffer location

EcTInt BuildBuffer(const FOSTimeInterval&, FmMnDirectiveList&, EcTInt&,
FmMsLoadData&)

Builds the buffer this is the controlling function used to determine the valid uplink window, available locations in the buff-
er, keeps activities together and determines the commands for the load

EcTInt& DetermineActForBuffer(const EcTInt, const FmMnDirectiveList&)

This routine ensures that activities are not split for the load that is being built. When it is determined that no more "full"
activities will fit in the buffer the load is marked for partitioning

EcTVoid DetermineLoad(FmMsLoadData&)

Determines all of the commands for the ATC load

EcTVoid DeterminePartitionUplinkWindow(const FoEcSpaceDirective&, FmMs-
LoadData&)

determines uplink window for partition

EcTVoid DetermineUplinkWindow(const FOSTimeInterval&, const FoEcSpaceDi-
rective&, FmMsLoadData&)

validates the requested uplink window

EcTVoid GenerateMapReport(EcTVoid)

Generate a map report for ATC buffer

EcTInt LocationsAvailable(const FoEcSpaceDirective&)

Determines the number of available buffer locations in the buffer

3-166 305-CD-042-001

EcTInt Partition(FmMnDirectiveList&, EcTInt&, FmMsLoadData&)

Builds the buffer for a partition, this is the controlling function used to determine the valid uplink window for the partition,
available locations in the buffer, keeps activities together and determines the commands for the load

EcTVoid UpdateModel()

Updates model from working to predicted or predicted to actual or from actual to previous

Private Data

RWSlistCollectable myDASIdList

List of DAS Id associated with the buffer

EcTInt myEndLoc

The location of the last executable command in the buffer

RWCString myLoadName

The Load name that identifies the buffer

EcTInt myNumberofSafeCmds

the number of safecommands for this buffer

RWSlistCollectable mySafeCommands

The list of safe commands that will be added to the end of the buffer

EcTInt myStartLoc

The location of the first executable command for the load/buffer

RWTime myTime

The time for determining the most recent buffer, it is set to the time of the DAS the buffer is being created for;

EcTInt myType

Indicates if the buffer is the actual buffer, a predicted buffer, a previous buffer, or a working buffer

FOSTimeInterval myUplinkWindow

the uplink window for the load associated with this buffer

Preprocessor Macros

_FmSmATCImage_h_

Types

class FmSmATCImage
ATC Dump Image

Preprocessor Macros

_FmSmCompareReport_h_

Types

class FmSmCompareReport
Generates a report on the compare of two dump files

Private Data

RWString myReportName

Name of the report to be generated

3-167 305-CD-042-001

Include Files

FmSmGroundImage.h

Preprocessor Macros

_FmSmDumpImage_h_

Types

class FmSmDumpImage
Dump Image Class

Base Classes

public FmSmGroundImage

Public Functions

EcTVoid CompareDumpWithDefaults(RWString)

Compares the value of a table dump with the default values stored in DMS

FoLiLoadContents ConvertDumptoContents(FoMsTableDataReq)

Converts a dump file to an ASCII load contents file

EcTVoid GenerateReport(FoMsImageRptReq)

Generates a report on a given dump file

Preprocessor Macros

_FmSmDumpReport_h_

Types

class FmSmDumpReport

Public Functions

RWString GetReportName(void)
EcTVoid SetReportName(RWString)

Private Data

RWString myReportName

Preprocessor Macros

_FmSmFSWImage_h_

Types

class FmSmFSWImage
Flight Software image class

3-168 305-CD-042-001

Preprocessor Macros

_FmSmGroundImage_h_

Types

class FmSmGroundImage

Public Functions

EcTVoid GenerateImageReport(RWString, EcTInt)

Generates a report from an dump image

Include Files

FmSmGroundImage.h

Preprocessor Macros

_FmSmImage_h_

Types

class FmSmImage

Base Classes

public FmSmGroundImage

Public Functions

EcTVoid GenerateReport(FmMsImageRptReq)

Generates a image report based on an input request

Preprocessor Macros

_FmSmMapBuffer_h_

Types

class FmSmMapBuffer
This class represents the interface proxy class between CMS internal subsystems and the FmSmSpacecraftModel class. FmSm-
SpacecraftModel manages the buffer modelling for ATC, RTS and table buffers and the ground imaging.

Public Functions

EcTInt CreateConnection(EcTVoid)

Establishes a connection with FmSmSpacecraft to receive requests from the schedule controller and the load catalog

EcTVoid DeleteBuffers(const RWSlistCollectables&)

Request received from load catalog when a late change as been successfully processed. The predicted buffer models as-
sociated with all of the generated loads are deleted. Instantiates an FmMsDeleteATCBuffers object.

EcTVoid Destroy(EcTVoid)

Destroys the connection with FmCcCommandModel

FmMsATCBufferInfo GetATCBufStartTime(const FoEcTime&)

Requests the start time of the 1st command in the buffer that will be used to model the newly recieved DAS or late change
request

3-169 305-CD-042-001

RWSlistCollectables& MapATC(const FmMnDirectiveList&, const FOSTimeInter-
val&, const FoEcTime&, const EcTInt&)

Request FmSmSpacecraft to map the command list into an ATC buffer model. Instantiates an FmMsATCMapRequest
object to be sent to FmSmSpacecraft.

RWSlistCollectables& MapLateChange(const FmMnDirectiveList&, const FOS-
TimeInterval&, const FoEcTime&, const EcTInt&)

Requests FmSmSpacecraft to map the late change command list into the correct buffer model. Instantiates an FmMsATC-
MapRequest object to be sent to FmSmSpacecraft.

RWSlistCollectables& Receive(EcTVoid)

Receives the response from FmSmSpacecraftModel It receives either A list of FmMsLoadData objects or a
FmMsATCBufferInfo object

EcTVoid Send(const RWCollectable&)

Sends messages to FmSmSpacecraftModel. Sends FmMsATCMapRequest, FmMsDeleteATCBuffers, or FmMsUpdate-
Buffer.

EcTVoid UpdateBuffer(const FmMsUpdateBuffer&)

Request the buffer be updated to a new status

Preprocessor Macros

_FmSmMicroLoadImage_h_

Types

class FmSmMicroLoadImage
Microprocessor load image class

Preprocessor Macros

_FmSmRTSBuffer_h_

Types

class FmSmRTSBuffer
This class represents a single RTS buffer. It models the contents of the buffer: the contents of each location are maintained.
A RTS map report may be generated from this class and authorization to access this class is verified using CSS software.

Public Functions

EcTVoid GenerateMapReport(EcTVoid)

Generate the RTS map report upon request from FUI

EcTVoid UpdateBuffer(const FmMsUpdateBuffer&)

Updates the RTS buffer when an FmMsUpdateBuffer message is received from CMS Load Catalog. The message is sent
in response to the receipt of an uplink verification from R/T Command

EcTVoid VerifyAuthorization(EcTVoid)

Verifies authorization to the RTS buffer

Private Data

EcTInt myBufferId

Identifies the buffer being accessed

EcTInt myCriticalFlag

Idicates that the load contained critical commands, therefore making the buffer critical

3-170 305-CD-042-001

RWCString myCurrentLoad

Indicates the load file name that was uplinked to this buffer

EcTInt myInhibitId

Indicates the id used to inhibit the commands in the buffer

Preprocessor Macros

_FmSmRTSBufferModel_h_

Types

class FmSmRTSBufferModel
This class represents the managing class of all the RTS buffers It will retrieve a requested buffer, update the specified buffer,
and request the buffer to generate its map report.

Public Functions

EcTVoid GenerateMapReport(const FoMsGenMapRequest&)

Requests the RTS buffer specified in the request to generate its map report

FmSmRTSBuffer& RetrieveBuffer(const EctInt)

Retrieves the requested buffer number

EcTVoid UpdateModel(const FmMsUpdateBuffer&)

Updates the specified buffer model

Private Data

EcTInt myNumberOfBuffers

indicates the number of buffers being modelled

Preprocessor Macros

_FmSmRTSImage_h_

Types

class FmSmRTSImage

Preprocessor Macros

_FmSmSpacecraftModel_h_

Types

class FmSmSpacecraftModel
This is the controlling class for the spacecraft modelling. FmSmSpacecraftModel handles all of the interprocess communica-
tion between CMS Schedule controller, CMS Load Catalog, and FUI. It asks the models, ATC, RTS, and table to determine
the mapping of the commands into the buffer locations.

The ATC buffer model determines the appropriate uplink window and if the load needs to be partitioned

Public Functions

EcTVoid ArchiveATCBuffer(const RWCString, const EcTInt)

buffer image once all the commands in the buffer have been executed it is stored with DMS, RTSs and Tables are archived
when the actual buffer is being updated to a new buffer.

3-171 305-CD-042-001

FmSmImage ConvertDumptoBinaryImage(RWString)

Converts a dump file into a binary image file by stripping out the EDU header and packet header information

RWSlistCollectable& CreateATCBuffer(const FmMsATCMapRequest&)

Creates a new ATC working buffer, the working buffer will be moved into the predicted buffer list after the ATC load is
generated

EcTVoid DeleteATCBuffers(const FmMsDeleteATCBuffers&)
FmSmATCBufferModel& GetRecentBuffer(const FoEcTime&)

Deletes ATC buffers from the list

EcTVoid HandleMessage(const RWCollectable&)

Handles all IPC messaging

EcTVoid Initialize(EcTVoid)

Initializes the spacecraft modelling process

FoMsCMSStatus& ProcessCompareRequest(const FmMsCompareRequest&)

Processes a Compare request

FoMsCMSStatus& ProcessImageReport(const FoMsImageRptReq&)

Processes a request to produce an image report

EcTVoid ProcessMapReq(EcTVoid)

Prcesses a generate map request

EcTVoid ProcessMemoryDump(EcTVoid)

Processes a memory dump request

FmSmATCBufferModel& RetrieveATCBuffer(const RWCSting&)

Retrieves the requested ATC buffer

RWCollectable& RetrieveBuffer(const FmMsBufferRequest&)

Retrieves requested buffer - either ATC or RTS

RWSlistCollectables& RetrieveBufferList(const FmMsBufferListRequest&)

Retrieves a list of buffers - RTS or ATC

EcTVoid SendEventMessage(const RWCString&)

Sends an event message to DMS for broadcasting

EcTVoid UpdateATCModel(const RWCString&)

Updates the ATC model - moves the working ATC model into a predicted model or a predicted model to the actual

EcTVoid UpdateBuffer(const FmMsUpdateBuffer&)

Updates appropriate buffer model

EcTVoid UpdateRTSModel(const FmMsUpdateBuffer&)

Updates the appropriate RTS buffer

EcTVoid UpdateTableModel(const FmMsUpdateBuffer&)

Updates the Table model

3-172 305-CD-042-001

Preprocessor Macros

_FmSmTable_h_

Types

class FmSmTable
Represent a single table on the spacecraft, it will update the ground representation of the spacecraft tables.

Public Functions

EcTVoid GenerateMapReport(EcTVoid)

Generates the table map report

EcTVoid UpdateTable(const FmMsUpdateBuffer&)

Updates the ground reference table when an FmMsUpdatebuffer message is received from CMS Load Catalog. The mes-
sage is sent in response to the receipt of an uplink verification from R/T Command

Private Data

RWCString myCurrentLoad

indicates the load that was uplinked and used to update the buffer

EcTInt myEndingLocation

the Ending location of the buffer

RWCString myOwner

the owner of the table

EcTInt mySize

the size of the table

EcTInt myStartLocation

the starting location of the table

FoLiTableFormat myTableFormat

The table format for this table

Preprocessor Macros

_FmSmTableImage_h_

Types

class FmSmTableImage
Table Image Class

Private Data

RWCString myName

Name of this table image

3-173 305-CD-042-001

Preprocessor Macros

_FmSmTableModel_h_

Types

class FmSmTableModel
This class represents themanaging class of all the table buffers It will retrieve a requested table, update the specified table with
the uplink load, and request the table to generate its map report

Public Functions

EcTVoid GenerateMap(const FoMsGenMapRequeset&)

Requests the Table specified in the request to genereate ist map report

FmSmTable& RetrieveTable(const RWCStrin&)

Retrieves the requested table

EcTVoid UpdateModel(const FmMsUpdateBuffer&)

Updates the specified table model

System Include Files

rw/collect.h

Preprocessor Macros

_FoFmDataField_h_

Types

class FoFmDataField
This class represents the data field of a table

Base Classes

public RWCollectable

Public Functions

RWBitVec ProduceBinary()

Produces the binary form of this field.

Private Data

RWCString myDataUnits

The units of the field value.

RWCString myFieldDescriptor

Textual information describing the field and its value.

EcTInt myFieldNumber

A unique value which identifies the field within the table.

EcTInt myRangeCheckFlag

An indicator of whether range checking is to be performed.

EcTInt myScaleFactor

The scale factor to be applied to the word value within this field.

3-174 305-CD-042-001

EcTInt myTableNumber

A unique value specifying a memory table.

EcTInt myValueBitSize

The size of the value in bits.

EcTInt myValueOverrideFlag

An indicator of whether the value may br overwritten with a new value during table generation.

RWCString myValueType

The data type of the value in this field.

Preprocessor Macros

_FoMsCMSStatus_h_

Types

class FoMsCMSStatus
This class is used to return processing status to CMS's external interfaces. It returns status for constraint checking and for load
generation.

Private Data

EcTInt myId

or the Instruction request id that the status is in response to

RWCString myStatus

The status is either:

complete - everything processed without error
pending - the constraint check was complete with
 soft constraints only
failed - constraint violations found were hard constraints
 load generation failed

Preprocessor Macros

_FoMsCompareMask_h_

Types

class FoMsCompareMask
This class represents a user specified mask for the compare report. The compare can be requested for a ground image and a
dump image or a load image or any combination of image comparisons. The mask specifies a particular portion of the image
not to compare.

Private Data

EcTInt myEndAddress

the ending address of the mask

EcTInt myStartAddress

the starting address of the mask

3-175 305-CD-042-001

Preprocessor Macros

_FoMsCompareReq_h_

Types

enum FileType
Enumeration of file types to be compared.

Enumerators

ATC

Absolute Time Command Buffer

FSW

Flight Software Buffer

MP

MicroProcessor Buffer

RTS

Relative Time Command Buffer

TAB

Table Buffer

class FoMsCompareReq

Private Data

EcTInt myEndAddress

This is the ending address for the comparison

RWCString myImageFile1

this is the first image file for use in the comparison

RWCString myImageFile2

this is the second image file for use in the comparison

EcTInt myStartAddress

This is the starting address for the comparison

FileType myType

the types of files to be compared

Preprocessor Macros

_FoMsConflictInfo_h_

Types

class FoMsConflictInfo
This class gives the identifying information on constraint violations. It specifies the id, the command mnemonic, the conflict-
ing command, the time the constraint violation occurred, whether the violation is hard or soft and a textual description of the
violaion

3-176 305-CD-042-001

Private Data

RWCString myCmdMnemonic

the directive command mnemonic being constraint checked

RWCString myConflictingCmd

the command that violates the constraint rule

RWTime myConstraintTime

the time of the constraint

EcTInt myId

the ID represent different things for different constraint checking requests:

- the activity id of a command in a schedule
- the line number of a command in a procedure
- the buffer location of a command in an RTS load
 contents file
- the PDB activity definition id

EcTInt mySoftHardFlag

Indicates if the violatin is hard or soft

RWCString myViolationInfo

Textual description of the violation for messaging

Include Files

FoUiInstruction.h

Preprocessor Macros

_FoMsGenMapRequest_h_

Types

class FoMsGenMapRequest
This class is a request for a buffer map report

Base Classes

public FoUiInstruction

Private Data

EcTInt myBufferID

The RTS buffer number used for the map report

EcTInt myEndLocation

the ending buffer locatin for the report

RWCString myLoadName

the load name used to identify the atc buffer model

enum myMapType

EcTInt myStartLocation

the starting location in the buffer for the report

3-177 305-CD-042-001

Private Types

enum

The type of buffer for which to generate the map report

Enumerators

ATC
RTS

Preprocessor Macros

_FoMsImageOverWrite_h_

Types

class FoMsImageOverWrite
This class represents a request to overwrite a ground with another (dump) image or a portion of that image.

Private Data

RWCString myDumpName

this is the name of the dump image to be used to overwrite the ground image

EcTInt myStartAddres

This is the starting address for the overwrite

EcTInt myStopAddress

This is the stop address for the overwrite

Preprocessor Macros

_FoMsImageRptReq_h_

Types

class FoMsImageRptReq
This class represents a request to output an image report

Private Data

RWCString myDirectory

this is the directory where the report is output

RWCString myImageName

This is the image file to produce the report from

RWCString myReportName

This is the report file

3-178 305-CD-042-001

Include Files

FoMsCMSStatus.h

Preprocessor Macros

_FoMsStatusComplete_h_

Types

class FoMsStatusComplete
Represents a good status from constraint checking or load generation

Base Classes

public FoMsCMSStatus

Include Files

FoMsCMSStatus.h

Preprocessor Macros

_FoMsStatusFailed_h_

Types

class FoMsStatusFailed
Represents a failed status from constraint checking of load generation

Base Classes

public FoMsCMSStatus

Include Files

FoMsCMSStatus.h

Preprocessor Macros

_FoMsStatusPending_h_

Types

class FoMsStatusPending
Represents a pending status from constraint checking This means that the constraint violations found are all soft constraints.
If CMS is processing a DAS, we wait to continue processing of the load until a response is received from planning and sched-
uling. If CMS is processing an RTS load we wait for a response from FUI to continue processing the RTS load.

3-179 305-CD-042-001

Base Classes

public FoMsCMSStatus

Include Files

FoUiInstruction.h

Preprocessor Macros

_FoMsTableDataReq_h_

Types

class FoMsTableDataReq
This class represents a request from the FUI's table load builder to import a table dump and convert it to a table load contents
for editing & producing a table load

Base Classes

public FoUiInstruction

Private Data

String myDirectory

This is the directory for the output report file

String myDump

Represents the dump file to be used for the conversion to a table load contents file

Preprocessor Macros

_FoRpMapReport_h_

Types

class FoRpMapReport
A description of the class

Preprocessor Macros

_FoSmBufferLocation_h_

Types

class FoSmBufferLocation
This class represnt the buffer location of a command in either the RTS or ATC buffers

Protected Functions

FoEcSpaceDirective& GetDirective(EcTVoid)

Gets mySpaceDirective

EcTInt GetLocation(EcTVoid)

Gets myLocation

EcTVoid SetDirective(const FoEcDirective&)

sets mySpaceDirective

3-180 305-CD-042-001

EcTVoid SetLocation(EcTInt)

Sets myLocation

Private Data

EcTInt myLocation

the buffer location (0-2999)

FoEcSpaceDirective mySpaceDirective

The directive in myLocation

3-181 305-CD-042-001

3.6 Load Catalog
The Load Catalog is a persistent process that runs on the FOS Data Server. It is responsible for
generating loads and for maintaining a catalog of all valid loads that are available for uplink by the
FOS.

Load Catalog generates loads from load contents files. Depending on the load type, Load Catalog
performs whatever conversion is needed to format the load as 1553B commands, computes the
CRC for the load, and builds and appends the load initiate command. The 1553B commands are
packetized according to CCSDS protocol.

Microprocessor and flight software load contents files are received by the FOS as binary files and
the generation of these types of loads only requires the conversion of the binary data to 1553B
commands.

RTS load contents files are passed to Load Catalog from FUI. Load Catalog is responsible for
requesting a constraint check on the command sequence by Command Model and for converting
each command and its time tag to binary format. The commands are then converted to 1553B
commands.

Table load contents files are passed to Load Catalog from FUI for user-generated tables, from DMS
for FDF tables, and from FAS for the spacecraft clock correlation table. Load Catalog converts
each field of the table from ASCII to binary using the table definition in the FOS database. The
table data is then converted to 1553B commands.

ATC loads are created by the CMS based on an activity list received from PAS. After the command
list generated from the activity list has been constraint checked and partitioned, the command list
for an ATC load is passed to Load Catalog by the Schedule Controller process. Load Catalog
converts each command in the list to its binary format, and converts it to a 1553B command.

For each load available for uplink by the FOS, Load Catalog maintains four files: the load contents
from which the load was generated, the load in uplink format, the load generation report, and the
load image that may be compared against a memory dump image. Load Catalog also maintains
identifying information about the load as catalog entries in the FOS database. Whenever a new load
is generated, Load Catalog stores the four files for that load with DMS and requests that DMS
create a new catalog entry for the load. When a load is deleted by user request, Load Catalog
removes the four files for that load with DMS and requests that DMS remove the catalog entry for
the load. Load Catalog is also responsible for updating fields in the catalog entry when a load is
scheduled for uplink or uplinked successfully.

3.6.1 Load Catalog Context

Figure 3.6-1 shows the context diagram for Load Catalog. Load Catalog has seven interfaces.

FOS Analysis:

• Load Catalog receives a request to generate a Table Load from a load contents file.

3-182
305-C

D
-042-001

CMS
Load Catalog

FOS User
Interface

FOS Data
Management

CMS:
Spacecraft

Model

CMS:
Command

Model

FOS
Analysis

FOS
Planning and
Scheduling

CMS:
Schedule
Controller

This System
Load Generation

Request,
Soft Constraint

Override

Updates,
Delete Request

Load Contents,
Table Formats,
Catalog Entries,

Notification Events

Uplink Loads, Load Reports,
Load Contents, Load Images,

Catalog Entries, Events

Load Generation
Status

Constraint
Info

Table Load
Generation Request

Load
Generation

Status

Integer
Status

RTS
Load

Contents

Delete Load Requests,
Store Load Requests,

Catalog Queries

Load
Deletion

Notification

Load
Scheduled
Notification

Figure 3.6-1. Load Catalog Context Diagram

3-183 305-CD-042-001

• Load Catalog sends an integer status to indicate if the load was successfully generated or
not.

CMS Spacecraft Model:

• Load Catalog sends requests to update buffer models whenever a load has been
successfully uplinked.

• Load Catalog sends delete requests whenever loads are deleted from the FOS load catalog.

FOS User Interface:

• Load Catalog receives requests to generate loads from load contents files.

• Load Catalog receives constraint override status in response to soft constraints.

• Load Catalog sends a CMS status to indicate conflict information which was discovered in
the constraint checking process.

• Load Catalog sends a CMS status to convey the success or failure of complete load
generation.

FOS Planning and Scheduling:

• Load Catalog receives a request to update the count of scheduled uplinks for a particualr
load.

• Load Catalog sends notification that a load has been deleted from the FOS load catalog.

CMS Schedule Controller:

• Load Catalog receives a request to delete a load or loads from the FOS load catalog.

• Load Catalog receives a request to store an ATC Load and create a catalog entry for that
load.

• Load Catalog receives a query into the catalog to discover if a specified load has been
uplinked or not.

• Load Catalog sends a status to indicate the success or failure of the above requests.

FOS Data Management:

• Load Catalog retrieves load contents files, which are used to generate loads.

• Load Catalog retrieves table formats, which are used to correctly format table data for table
load generation.

• Load Catalog updates entries in the FOS load catalog.

• Load Catalog receives notification event messages that indicate tthe time at which a
specified load has been successfully uplinked to the spacecraft.

• Load Catalog receives notification event messages whenever a table load contents file has
been imported into DMS from the FDF.

• Load Catalog sends uplink loads, load reports, load images, and load contents files to be
stored whenever such files are generated during the load generation process.

• Load Catalog sends a request to add an entry to the FOS load catalog.

• Load Catalog sends event messages.

3-184 305-CD-042-001

CMS Command Model:

• Load Catalog sends RTS load contents files to be constraint checked.

• Load Catalog receives conflict information concerning constraint violations that were
detected by the Rule-Based Constraint Checker.

3.6.2 Load Catalog Interfaces

Table 3.6.2. Load Catalog Interfaces (1 of 2)

Interface
Service

Interface
Class

Interface Class
Description

Service
Provider

Service
User

Frequency

Generate Load FmMsGenerateLo
ad

Proxy between CMS: Load
Catalog and FUI.

CMS: Load
Catalog

FUI: Load
Manager,
Table
Load Builder,
or RTS Load
Builder

1/day

FoMsLoadGenRe
q

Request to generate
specified load.

FoMsCMSStatus Status of load generation.

Override RTS
Constraints

FmMsGenerateLo
ad

Proxy between CMS: Load
Catalog and FUI requesting
that RTS constraint
violations be ignored.

CMS: Load
Catalog

FUI: RTS Load
Builder

1/day

FoMsCMSStatus Status of constraint check.

Update Load
Scheduled Count

FmMsCatalogUpd
ate

Proxy between CMS: Load
Catalog and PAS to update
status of load to scheduled.

CMS:Load
Catalog

PAS: Load
Scheduler

1/day

Load Deletion FpRmLoadActDel Proxy between CMS: Load
Catalog and PAS to request
deletion of a load.

CMS: Load
Catalog

PAS: Load
Scheduler

Process Load
Uplink
Notification

FmMsInform Proxy between CMS: Load
Catalog and DMS to request
CMS act upon a load uplink
event message.

CMS:Load
Catalog

DMS: Event
Handler

5/day

Check for ATC
Load

FmMsStoreATCL
oad

Proxy between CMS: Load
Catalog and CMS: Schedule
Controller to check for the
existence of a load.

CMS:Load
Catalog

CMS:
Schedule
Controller

1/week

ATC Load
Deletion Request

FmMsStoreATCL
oad

Proxy between CMS: Load
Catalog and CMS: Schedule
Comtroller to request
deletion of a scheduled load.

CMS: Load
Catalog

CMS:
Schedule
Controller

1/week

Store ATC Load FmMsStoreATCL
oad

Proxy between CMS: Load
Catalog and CMS: Schedule
Controller to request storage
of an ATC load.

CMS: Load
Catalog

CMS:
Schedule
Controller

5/day

3-185 305-CD-042-001

Interface
Service

Interface
Class

Interface Class
Description

Service
Provider

Service
User

Frequency

Delete Buffer
Models

FmSmMapBuffer Proxy between CMS: Load
Catalog and CMS:
Spacecraft Model .

CMS:
Spacecraft
Model

CMS: Load
Catalog

10/week

FmMsDeleteATC
Buffers

Request to delete buffers.

Update Buffer
Models

FmSmMapBuffer Proxy between CMS: Load
Catalog and CMS:
Spacecraft Model.

CMS:
Spacecraft
Model

CMS: Load
Catalog

10/week

FmMsUpdateBuff
er

Update Buffer from working
to predicted and then to
actual.

Validate RTS FmMsValidateCo
nstraints

Proxy between CMS: Load
Catalog and CMS:
COmmand Model to request
an RTS load contents be
constraint checked.

CMS:
Command
Model

CMS: Load
Catalog

1/day

FoMsCMSStatus Status of constraint check.

Generate Table
Load

FmMsGenTable Proxy between CMS: Load
Catalog and FAS.

CMS: Load
Catalog

FAS:
FaCcClockErr
or

1/week

FoMsGenInfo Request to generate table
load from load contents file.

Store Load FoDsFileAccessor Proxy between DMS and
CMS: Load Catalog to store
files.

DMS CMS: Load
Catalog

50/day

Store Catalog
Entry

FdDbAccessor Proxy between DMS and
CMS: Load Catalog to store
catalog entries.

DMS CMS: Load
Catalog

5/day

Retrieve Catalog
Entry

FdDbAccessor Proxy between DMS and
CMS: Load Catalog to
retrieve catalog entries.

DMS CMS: Load
Catalog

5/day

Table 3.6.2. Load Catalog Interfaces (2 of 2)

3-186
305-C

D
-042-001

FmLdLoadCatalog

FoMsLoadGenReq

FmMsGenerateLoad

CMS proxy with FUI

FoMsCMSStatus

myId
myStatus

ConstraintOverride(enum option{y, n})
CreateConnection()
DestroyConnection()
GenerateLoad(const FoMsLoadGenReq&)
Receive()
Send(const RWCollectable&)

myAuthorizationList
myEventPtr
myProcessingStatus

CheckForUplink(EcTInt)
ConstraintCheck(const FoMsRTSLoadGenReq&)
CreateCatalogEntry(FoMsLoadGenReq*)
CreateCatalogEntry(const FoLiATCLoad&)
HandleMessage()
MakeFSWload(const FoMsFSWLoadGenReq&)
MakeMicroload(const FoMsMPLoadGenReq&)
MakeRTSload(const FoMsRTSLoadGenReq&)
MakeTableload(const FoMsTableLoadGenReq&)
ProcessDeletions(const RWSlistCollectables&)
ProcessLoadGenRequest(const FoMsLoadGenReq&)
ProcessLoadUplinkStatus(const FoEvEvent&)
ToFUI(const FoMsCMSStatus&)
UpdateCatalogEntry(const FoEvEvent&)

FoEvEvent

FmMsInform

CMS proxy with DMS

Send(const RWCollectable&)
InformCMS(const FoEvEvent&)

CreateConnection()
DestroyConnection()

FmMsCatalogUpdate

CreateConnection()
DestroyConnection()
LoadScheduled(const HString&)
Send(const RWCString&)

CMS proxy with PAS

UpdateCatalogEntry(const RWCString&)

CONTINUED

FpRmLoadActDel

loadActDelRequest(const HString &, int)

PAS proxy with CMS

CONTINUED

This page shows the Load
Catalog and its external
interfaces. The internal
interfaces are shown on

another page.

FmMsGenTable

FmMsGenInfo

CreateConnection()
DestroyConnection()
MakeTableLoad(const FoMsGenInfo&)
Receive()
Send(const FoMsGenInfo&)

myDirectory
myFilename
myTableName

CMS proxy with ANA

FoLiLoad

CONTINUED

{shared - FMN,FUI}

 - : EcTInt
 - : RWCString

 + : FoMsCMSStatus&
 + : EcTInt
 + : EcTVoid
 + : FoMsCMSStatus&
 - : FoMsCMSStatus&
 - : EcTVoid

 - : FoEvEvent*
 - : FoMsCMSStatus

 + : EcTInt
 + : EcTVoid

+ : EcTInt
 + : EcTInt

+ : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : EcTInt

+ : FmMsUpdateBuffer&

 - : EcTVoid
 + : EcTVoid

 - : EcTInt
 - : EcTVoid

 - : EcTInt
 - : EcTVoid
 + : EcTVoid
 - : EcTInt

 + : EcTInt

 + : int

 - : EcTInt
 - : EcTVoid
 + : EcTInt
 - : EcTInt
 - : EcTInt

 - : RWCString
 - : RWCString
 - : RWCString

is sent
to proxy by

is received by

sends update
information to

is sent
by

receives from
proxy

sends to
Load Catalog

sends to
Load Catalog

communicates
with

sends to
Load Catalog

receives and
processes

creates

Figure 3.6-2. Load Catalog External Interfaces

3-187 305-CD-042-001

3.6.3 Load Catalog Object Model

The Load Catalog object model is shown in Figure 3.6-2. FmLdLoadCatalog maintains lists,
represented by FoLdCatalogEntry, of the various types of loads ready for uplink in the EOC.
FmLdLoadCatalog is responsible for generating loads, creating and updating catalog entries,
responding to queries about the load catalog, and generating reports.

The FmMsGenerateLoad class is an interface proxy class to FUI. FUI uses this class to request that
a load be generated from a load contents file. FmLdLoadCatalog receives from this proxy a
FoMsLoadGenReq object. This object contains information necessary to generate certain types of
loads. The Load Catalog uses the FoMsLoadGenReq, shown in Figure 3.6-3, to find the load
contents file and create the load. Also, some of the information in the FoMsLoadGenReq will be
copied into the FoLdCatalogEntry. FmLdLoadCatalog returns to the proxy a FoMsCMSStatus
object, which is used to convey the status of load generation.

The FmMsInform class is an interface proxy with DMS. DMS uses this class to notify
FmLdLoadCatalog that either a load has been successfully uplinked, or that an externally-
generated load contents file has been imported into DMS.

The FmMsGenTable class is an interface proxy to the Analysis subsystem. It is used when
Analysis wants to request an FoLiTableLoad be generated from a load contents file. The class
FoMsGenInfo contains information about the table load contents file from which Analysis would
like a table load generated. FmLdLoadCatalog will use the data in FoMsGenInfo to generate the
FoLiTableLoad.

The FmMsCatalogUpdate class is an interface proxy to the Planning and Scheduling subsystem.
Planning and Scheduling uses this class to inform CMS that a load has been scheduled for uplink.
FmLdLoadCatalog will update the FoLdCatalogEntry for that load appropriately.

The FpRmLoadActDel class is an interface proxy belonging to Planning and Scheduling that
FmLdLoadCatalog uses to inform Planning and Scheduling when a load has been deleted from the
FOS load catalog.

Figure 3.6-4 shows the different types of loads and their structures. Each of the load subclasses
(FoLiTableLoad, FoLiFlightLoad, FoLiRTSLoad, FoLiMicroLoad, and FoLiATCLoad) derived
from the FoLiLoad base class is responsible for building its load uplink module by packetizing the
load data and appending the load initiate command. Additionally, the ATC and RTS loads contain
commands which must be converted to binary to build the load uplink module, and certain fields
in table loads must be converted to spacecraft table format. Additionally, the FoLiRTSLoad class
validates commands in RTS loads using definitions in the Command Database.

The FoLiTableLoad class also uses the FoFmTableFormat class, which contains the template for
the table load. This class is retrieved from DMS, and it contains one to many FoFmDataField
objects.

Each FoLiLoad object is made up of four components. Figure 3.6-5 shows the components that
make up each type of load. FoLiUplinkLoad represents the uplinkable, spacecraft-ready form of
the load. FoLiLoadContents represents the raw contents of the load as they are received by CMS.
FoLiLoadImage is the binary form of the load, before it has been put into spacecraft format.
FoLiLoadReport is the report that is automatically generated whenever a load is generated. It
contains pertinent information about the load and its location in spacecraft memory.

3-188
305-C

D
-042-001

FoMsLoadGenReq

FoMsFSWLoadGenReq FoMsMPLoadGenReq

FoMsTableLoadGenReq FoMsRTSLoadGenReq

myCheckOnlyFlag
myOffset
myRTSBufferNumber

myEndField
myStartField
myTableName

myDirectory
myFunction
myLoadName
mySize
mySpacecraftId
mySubsystemId
myUserId
myValidUplinkPeriod

This page of the object shows
different types of load generation

requests that are received from FUI.

{shared - FMN,FUI}

{shared - FMN,FUI}

 - : EcTInt
 - : EcTInt
 - : EcTInt

 - : EcTInt
 - : EcTInt = 0
 - : RWCString

 - : RWCString
 - : RWCString
 - : RWCString
 - : EcTInt
 - : RWCString
 - : RWCString
 - : RWCString
 - : FOSTimeInterval

Figure 3.6-3. Load Generation Requests

3-189
305-C

D
-042-001

FoLiLoad

FoLiATCLoad

FoLiMicroLoad
FoLiFlightLoad

FoLiRTSLoad

FoLiTableLoad

myEndingLocation
myLoadReport
myMemoryUpdateSize
myStartingLocation

BuildUplinkLoad()

myEndingLocation
myLoadReport
myMemoryUpdateSize
myStartingLocation

BuildUplinkLoad()

myCriticalCommands
myCriticalFlag
myDASId
myDirectiveList
myLoadReport

BuildUplinkLoad()
ComposeReport()
CreateLoad(const FmMnDirectiveList&)

myCriticalCommands
myCriticalFlag
myDirectiveList
myLoadReport
myRTSBuffDestination

BuildUplinkLoad(const FoMsLoadGenReq&)

CreateLoad(const FoMsLoadGenReq&)

myDestination
myDirectory
myLoadContents
myLoadName
myLoadSize
myNumberOfPieces
myOwner
mySizeOfLastPiece
mySpacecraftId
myStatus
myUplinkLoads
myUplinkPeriod

BuildUplinkLoad(const FoLiLoadImage&)
CreateLoad(const FoMsLoadGenReq&)

ComposeReport()

This page shows the different
types of loads that exist and their

structures. The aggregate parts of
each load are shown on a

separate page.

FoFmTableFormat

FoFmDataField

myEndLocation

myTableName

myLoadReport
myStartLocation

BuildUplinkLoad()
ComposeReport()
CreateLoad(const FoMsTableLoadGenReq&)
GenerateLoadImage(const FoLiLoadContents&)
RetrieveTableFormat()

myDataUnits
myDefaultValue
myFieldDescriptor
myFieldNumber
myHighRangeValue
myLowRangeValue
myRangeCheckFlag
myScaleFactor
myTableNumber
myValueBitSize
myValueOverrideFlag
myValueType

ProduceBinary()

myDescriptor
myMaxSize
myStartAdress
myTableMnemonic
myTableNumber
myTableType

ProduceBinary()

ComposeReport()
GenerateLoadImage(const FoLiLoadContents&)

FmLdLoadCatalog

cont.

 - : EcTInt
 - : FoLiLoadReport*
/- : EcTInt
 - : EcTInt

 + : EcTInt

 - : EcTInt
 - : FoLiLoadReport*
/- : EcTInt
 - : EcTInt

 + : EcTInt

 - : FmMnDirectiveList
 - : EcTInt
 - : EcTInt
 - : FmMnDirectiveList
 - : FoLiATCLoadReport*

 + : EcTInt
 + : EcTInt
 + : FoMsCMSStatus&

 - : FmMnDirectiveList = NULL
 - : EcTInt
 - : FmMnDirectiveList
 - : FoLiRTSLoadReport*
 - : EcTInt

 + : EcTInt

 + : EcTInt

 - : RWCString
 - : RWCString
 - : FoLiLoadContents
 - : RWCString
 - : EcTInt
 - : EcTInt

- : RWCString
 - : EcTInt
 - : EcTInt
 - : FoMsCMSStatus

- : RWSlistCollectables
 - : FOSTimeInterval

+ : EcTInt
+ : FoMsCMSStatus&

 + : EcTInt

 - : EcTInt

 - : RWCString

 - : FoLiLoadReport
 - : EcTInt

 + : EcTInt
 + : EcTVoid
 + : EcTInt
 + : EcTInt
 + : FoFmTableFormat&

 - : RWCString
 - : <template>
 - : RWCString
 - : EcTInt
 - : <template>
 - : <template>
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : RWCString

 + : RWBitVec

 - : RWCString
 - : EcTInt
 - : EcTInt
 - : RWCString
 - : EcTInt
 - : RWCString

 + : RWBitVec

 + : EcTInt
 + : EcTInt

1+

creates

Figure 3.6-4. Load Types

3-190
305-C

D
-042-001

FoLiUplinkLoad

FoLiLoadContents

FoLiLoadReport

FoLiATCLoadReport

myCommandList
myNumOfCriticalCmds
myRTSBufferNumber
myUplinkTime

FoLiRTSLoadReport

myEndLocation
myLoadName
mySize
myStartLocation
myType
myUplinkPeriod

BuildLoad(const FoLiLoadImage&)
BuildLoadData(EcTInt[])
CCSDSWrap(EcTInt[])

myCommandList
myControlCommands
myStartTime
myStopTime
myUplinkTime

FoLiLoadImage

FoLiLoad

This page shows the
aggregate parts of a load. The

different types of loads are shown
on a separate page.

CONTINUED

 _ : FmScCommandList
 _ : EcTInt
 _ : EcTInt
 _ : RWTime

 _ : EcTInt
 _ : RWCString
 _ : EcTInt
 _ : EcTInt
 _ : RWCString
 _ : FOSTimeInterval

 + : EcTInt
 + : EcTInt*
 + : EcTInt*

 _ : FmScCommandList
 _ : FmScCommandList
 _ : RWTime
 _ : RWTime
 _ : RWTime

1+

3.6-5. Load Components

3-191 305-CD-042-001

Derived from this class is FoLiRTSLoadReport, which contains additional information relevant to
RTS loads only, such as a buffer number and number of commands. Also derived from
FoLiLoadReport is FoLiATCLoadReport, which contains information pertinent only to ATC
loads, such as a listing of commands and buffer information. Figure 3.6-6 shows that these
components are all derived from FoDsFile.

Figure 3.6-7 shows the internal interfaces of FmLdLoadCatalog. The constraint checking
performed on RTS loads is done through FmMsValidateConstraints, the interface proxy to the
Command Model. The proxy will accept the request for constraint checking to be done on a
specified RTS load contents, and return an FoMsCMSStatus object, indicating what constraint
violations were found, if any.

The class FmSmMapBuffer is a proxy to the spacecraft model. It is used to request updating of the
spacecraft model when an FoEvEvent specifying a successful load uplink is received.
FmLdLoadCatalog sends a FoMsUpdateBuffer object via the proxy. The proxy is also used to
request deletion of any ATC buffers in the event of a late change. The FoEvEvent specifying the
load uplink is received through FmMsInform, a proxy with the Data Management Subsystem.

The class FmMsStoreATCLoad is a proxy to the FmScScheduleController. It is used to receive a
reference to an FoLiATCLoad object which was created by FmScScheduleController. The
FoLiATCLoad is stored in DMS, and a FoLdCatalogEntry is created for it and stored as well. This
proxy can also request Load Catalog to verify that a certain load has or has not been uplinked.

3.6.4 Load Catalog Dynamic Model

The Load Catalog Dynamic Model described in this section consists of the following scenarios:

• Load Catalog Initialization

• Table Load Generation

• Table Load Generation from FDF Load Contents

• Table Load Generation for Clock Correlation

• RTS Load Generation

• Microprocessor Load Generation

• Flight Software Load Generation

• ATC Load Generation

• Uplink Notification Receipt

3-192
305-C

D
-042-001

FoDsFile

FoLiLoadContents FoLiUplinkLoadFoLiLoadReportFoLiLoadImage

myPath
myFilename

Close(fileptr)
Open(file,path,action)
Read(fileptr,recptr,size)
Write(fileptr,recptr,size)

{shared - FDM with all S/S}

 _ : RWCString
 _ : RWCString

 + : EctInt
 + : fileptr
 + : EctInt
 + : EctInt

Figure 3.6-6. Load Component File Classes

3-193
305-C

D
-042-001

FmLdLoadCatalog

FmMsValidateConstraints

FmSmMapBuffer

FmMsStoreATCLoad

FmMsUpdateBuffer

myBufferID
myEndLocation
myLoadName
myStartLocation
myTableName
myType

CreateConnection(EcTVoid)
DeleteBuffers(const RWSlistCollectables&)
Destroy(EcTVoid)
GetATCBufStartTime(const FoEcTime&)
Receive(EcTVoid)
Send(const RWCollectable&)
UpdateBuffer(const FmMsUpdateBuffer&)

CreateConnection()
DestroyConnection()
Receive()
Send(const RWCollectable&)
ValidateCommands(const FmScConstCk&)
ValidateRTS(const RWCString&, const RWCString&)

CheckForLoad(EcTInt)
CreateConnection()
DeleteLoads(const RWSlistCollectables&)
DestroyConnection()
Receive()
Send(const RWCollectable&)
StoreLoad(const FoLiATCLoad&)

This page of the object model
shows the Load Catalog with
its internal interfaces. The

external interfaces are shown
on another page.

FoLdCatalogEntry

FoLdUplinkInfo

FdDbAccessor

myLoadName
myTimeOfUplink

myCRC
myCriticalFlag
myDASId
myDestination
myEndLocation
myLoadName
myLoadSize
myLoadType
myNumPackets
myNumTimesSchd
myNumberUplinkLoads
myOwner
myRTSBufferNumber
mySpacecraftLocation
myStartLocation
myStorageLocation
myUplinkLoads
myUplinkTime

CMS proxy with
Schedule Controller

CMS proxy with Command Model

CMS proxy with Spacecraft Model

continued

 - : EcTInt
 - : EcTInt
 - : RWCString
 - : EcTInt
 - : RWCString
 - : EcTInt

 + : EcTInt
 + : EcTVoid
 + : EcTVoid
 + : FmMsATCBufferInfo
 + : RWSlistCollectables&
 + : EcTVoid
 + : EcTVoid

 + : EcTInt
 + : EcTVoid
 + : FoMsCMSStatus&
 + : FoMsCMSStatus&
 + : FoMsCMSStatus&
 + : FoMsCMSStatus&

 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTVoid
 - : EcTInt
 - : EcTVoid
 + : EcTInt

{shared - FMN,FUI,FDM,FPS}

 - : RWCString
 - : RWTime

 - : EcTULongInt
 - : EcTInt
 - : EcTInt
 - : RWCString
 - : EcTInt
 - : RWCString
 - : EcTInt
 - : RWCString
 - : EcTInt
 - : EcTInt
 - : EcTInt = 1
 - : RWCString
 - : EcTInt
 - : RWCString
 - : EcTInt
 - : RWCString
 - : RWSlistCollectables
 - : RWTime = NULL

sends storage
requests to

requests
constraint

check
from

sends to
Spacecraft Model

1+

creates/
updates

1+

sends
updates

to

Figure 3.6-7. Load Catalog Internal Interfaces

3-194 305-CD-042-001

3.6.4.1 Load Catalog Initialization Scenario

3.6.4.1.1 Load Catalog Initialization Abstract

The Load Catalog Initialization scenario describes how the Load Catalog software gets started and
readied for data processing.

3.6.4.1.2 Load Catalog Initialization Summary Information

Interfaces:

• Command Model

• Spacecraft Model

• Planning and Scheduling

Stimulation:

• Load Catalog software started and initialize function called

Desired Response:

• Load Catalog software ready to accept data for processing

Pre-Conditions:

• none

Post-Conditions:

• none

3.6.4.1.3Load Catalog Initialization Description

Figure 3.6-8 shows the Load Catalog Initialization Event Trace. When the initialize function is
called, Load Catalog creates an ipc connection with the Command Model via the proxy FmMsVal-
idateConstraints. Load catalog then creates an ipc connection to the Spacecraft Model via the
proxy FmMsMapBuffer. Lastly, Load Catalog creates an ipc connection with Planning and Sched-
uling via the proxy FpRmLoadActDel. If all of these connections are successfully established, the
initialize function is complete.

3.6.4.2 Table Load Generation Scenario

3.6.4.2.1 Table Load Generation Abstract

The Table Load Generation scenario describes the generation of an uplink table load from a table
load contents file that was created by the user through the Table Editor tool provided by User
Interface.

3-195
305-C

D
-042-001

FmLdLoadCatalog FmMsValidateConstraints FmSmMapBuffer FpRmLoadActDel

{CMS proxy with
Command Model}

{CMS proxy with
Spacecraft Model}

{PAS proxy with
Load Catalog}

creates connection

returns success
status

creates connection

returns success status

creates connection

returns success status

Figure 3.6-8. Load Catalog Initialization Event Trace

3-196 305-CD-042-001

3.6.4.2.2Table Load Generation Summary Information

Interfaces:

• User Interface

• Data Management

Stimulus:

• Receipt of a Load Generation Request from FUI

Desired Response:

• Table Load generated and stored with DMS

• Table Load entered into Load Catalog

Pre-Conditions:

• Load Catalog software has been initiated

Post-Conditions:

• Generated load is available for uplink

3.6.4.2.3Table Load Generation Description

Figure 3.6-9 shows the Table Load Generation Event Trace. The Load Catalog receives a Load
Generation Request, including identifying information about the load contents file, from FUI. Load
Catalog creates a Table Load object and passes it the identifying information about the table load
contents. Table Load retrieves the load contents from DMS. Table Load retrieves the table format
from DMS, and uses it with the load contents to create the load image. Table Load generates the
uplink table loads from the load image and requests DMS to store the uplink load, the load
image,the load contents, and the load report. Load Catalog creates a Load Catalog Entry and
requests DMS to add it to the load catalog database. Load Catalog sends an Event Message to DMS
indicating that the load generation is complete and passes a success status to FUI.

3.6.4.3 Table Load Generation from FDF Load Contents Scenario

3.6.4.3.1Table Load Generation from FDF Load Contents Abstract

The Table Load Generation from FDF Load Contents scenario describes how a Table Load will be
generated from externally generated load contents. When an FDF Table Load Contents file is
imported into DMS, CMS is notified. Upon notification, CMS will generate a Table Load from the
Table Load Contents and creates a Catalog Entry for the Table Load.

3-197
305-C

D
-042-001

FUI
FmMsGenerateLoad

FmLdLoadCatalog
FoLiTableLoad

FoLiLoadContents

FoLiUplinkLoad

FoLiLoadImage

FoLiLoadReport

FoLdCatalogEntry
DMS

{CMS proxy
with FUI}

FoFmTableFormat
sends

request sends
request

creates/
sends info

creates
from info

returns
status

retrieves from DMS

creates from load contents and format

returns status

creates from load image

returns status

creates

returns status

returns
status

creates from info
stores
info

returns status
returns
statusreturns

status

stores load contents, load image, report, and uplink load(s)

for
each
4K

Figure 3.6-9. Table Load Generation Event Trace

3-198 305-CD-042-001

3.6.4.3.2 Table Load Generation from FDF Load Contents Summary Information

Interfaces:

• DMS

Stimulus:

• Receipt of a FDF Load Receipt Notification Event Message from DMS

Desired Response:

• Table Load generated and stored with DMS

• Table Load entered into Load Catalog

Pre-Conditions:

• Load Catalog software has been initialized

Post-Conditions:

• Generated load is available for uplink

3.6.4.3.3Table Load Generation from FDF Load Contents Description

Figure 3.6-10 shows the Table Load Generation from FDF Load Contents Event Trace. DMS re-
ceives an externally-generated Load Contents file from the FDF. Once the load contents has been
validated, DMS informs Load Catalog of the existence of the Load Contents file.

The Load Catalog creates a Table Load object and passes it the identifying information about the
table load contents. Table Load retrieves the load contents from DMS. Table Load retrieves the
table format from DMS, and uses it with the load contents to create the load image. Table Load
generates the uplink table load from the load image, and then creates the load report. Load Catalog
requests DMS to store the uplink load, the load image, the load contents, and the load report. Load
Catalog creates a Load Catalog Entry and requests DMS to add it to the load catalog database. Load
Catalog sends an Event Message to DMS indicating that the load generation is complete.

3.6.4.4 Table Load Generation for Clock Correlation Scenario

3.6.4.4.1 Table Load Generation for Clock Correlation Abstract

The Table Load Generation for Clock Correlation scenario describes how a Table Load is gener-
ated from a load contents file received from the Analysis subsystem.

3-199
305-C

D
-042-001

FmMsInform FmLdLoadCatalog FoLiTableLoad
FoLiLoadContents

FoLiUplinkLoad

FoLiLoadImage

FoLiLoadReport

FoLdCatalogEntry

DMS

{CMS proxy
with DMS}

FoFmTableFormat

sends
notification

creates/
sends filename sends

filename

returns
status

retrieves from DMS

creates from load contents and format

returns status

creates from load image

returns status

creates

returns status

returns
status

creates from load parameters

returns status

stores load contents, load image, report, and uplink load(s)

for
each
4K

sends notification
event message

retrieves input file

returns input file

returns status

stores load parameters

Figure 3.6-10. Table Load Generation from FDF Load Contents Event Trace

3-200 305-CD-042-001

3.6.4.4.2 Table Load Generation for Clock Correlation Summary Information

Interfaces:

• Analysis

• DMS

Stimulus:

• Receipt of a table generation request from Analysis

Desired Response:

• Table Load generated and stored with DMS

• Table Load entered into Load Catalog

Pre-Conditions:

• Load Catalog software has been initiated

Post-Conditions:

• Table Load available for uplink

3.6.4.4.3 Table Load Generation for Clock Correlation Description

Figure 3.6-11 shows the Table Load Generation for Clock Correlation Event Trace. The Load Cat-
alog receives a table load generation request from Analysis via the proxy FmMsGenTable. The
Load Catalog reads the table load generation request to learn the location of the load contents file.

The Load Catalog creates a Table Load object and passes it the identifying information about the
table load contents. Table Load retrieves the load contents from DMS. Table Load retrieves the
table format from DMS, and uses it with the load contents to create the load image. Table Load
generates the uplink table load from the load image, and then creates the load report. Load Catalog
requests DMS to store the uplink load, the load image, the load contents, and the load report. Load
Catalog creates a Load Catalog Entry and requests DMS to add it to the load catalog database. Load
Catalog sends an Event Message to DMS indicating that the load generation is complete.

3.6.4.5 RTS Load Generation Scenario

3.6.4.5.1 RTS Load Generation Abstract

The RTS Load Generation scenario describes the generation of an uplink RTS load from an RTS
load contents file that was created by the user through the RTSEditor tool provided by User
Interface.

3-201
305-C

D
-042-001

FmMsGenTable FmLdLoadCatalog FoLiTableLoad
FoLiLoadContents

FoLiUplinkLoad

FoLiLoadImage

FoLiLoadReport

FoLdCatalogEntry

DMS

{CMS proxy
with ANA}

FoFmTableFormat
sends table

load gen request
creates/

sends filename
sends

filename

returns
status

retrieves from DMS

creates from load contents and format

returns status

creates from load image

returns status

creates

returns status

returns
status

creates from load parameters

returns status

stores load contents, load image, report, and uplink load(s)

for
each
4K

retrieves input file

returns input file

returns status

stores load parameters

returns success
status

Figure 3.6-11. Table Load Generation for Clock Correlation Event Trace

3-202 305-CD-042-001

3.6.4.5.2 RTS Load Generation Summary Information

Interfaces:

• User Interface

• Data Management

• Command Model

Stimulus:

• Receipt of Load Generation Request from FUI

Desired Response:

• RTS Load generated and stored with DMS

• RTS Load entered in RTS Load Catalog

Pre-Conditions:

• Load Catalog software has been initiated

Post-Conditions:

• Generated load is available for uplink

3.6.4.5.3 RTS Load Generation Description

Figure 3.6-12 shows the RTS Load Generation Event Trace. The Load Catalog receives a Load
Generation Request, including identifying information about the load contents file, from FUI.
Load Catalog requests a constraint check from the Command Model on the load contents file.
Command Model returns a status, which is returned to FUI if constraints are found. FUI has the
option to override soft constraints or terminate the load generation process. If no constraints
violations are found, or if soft constraint violations are overridden, Load Catalog creates an RTS
Load object and passes it the identifying information about the RTS load contents. RTS Load
retrieves the load contents from DMS. RTS Load generates the uplink RTS load from the load
contents and requests DMS to store the uplink load, load image, load contents, and the load report.
Load Catalog creates a Load Catalog Entry and requests DMS to add it to the load catalog database.
Load Catalog sends an Event Message to DMS indicating that the load generation is complete and
passes a success status to FUI.

3-203
305-C

D
-042-001

FUI

FmLdLoadCatalog

FoLiRTSLoad

FoLdCatalogEntry

DMS

FoLiUplinkLoad

FoLiRTSLoadReport

FoLiLoadContents

FmMsValidateConstraints

FmMsGenerateLoad

{CMS proxy with FUI} {CMS proxy with
Command Model}

FoLiLoadImage

sends load gen
request

returns load contents file

sends load contents

returns success status

sends
filename

returns
success status

retrieves load contents file

sends load
contents

returns constraint
check results

sends load
gen request

returns constraint
check results

overrides soft
constraints

sends load
gen request

returns constraint
check results

overrides soft
constraints

creates
binary

creates from load image
for

each
4K

creates

stores load report, uplink load, load image, and load contents

returns success status

creates from load parameters

stores

returns success
status

returns success status

returns success status
returns success

statusreturns success
status

Figure 3.6-12. RTS Load Generation Event Trace

3-204 305-CD-042-001

3.6.4.6 Microprocessor Load Generation Scenario

3.6.4.6.1 Microprocessor Load Generation Abstract

The Microprocessor Load Generation scenario describes the generation of an uplink
microprocessor load from a microprocessor load contents file that was created outside of the FOS
and imported via an IST or EOC workstation.

3.6.4.6.2 Microprocessor Load Generation Summary Information

Interfaces:

• User Interface

• Data Management

Stimulus:

• Receipt of Load Generation Request from FUI

Desired Response:

• Microprocessor Load generated and stored with DMS

• Microprocessor Load entered in microprocessor Load Catalog

Pre-Conditions:

• Load Catalog software has been initiated

Post-Conditions:

• Generated load is available for uplink

3.6.4.6.3 Microprocessor Load Generation Description

Figure 3.6-13 shows the Microprocessor Load Generation Event Trace. The Load Catalog receives
a Load Generation Request, including identifying information about the load contents file, from
FUI. Load Catalog creates a Microprocessor Load object and passes it the identifying information
about the microprocessor load contents. Microprocessor Load retrieves the load contents from
DMS. Microprocessor Load generates the uplink microprocessor load from the load contents and
requests DMS to store the uplink load, load contents, load image, and the load report. Load Catalog
creates a Load Catalog Entry and requests DMS to add it to the load catalog database. Load Catalog
sends an Event Message to DMS indicating that the load generation is complete and passes a
success status to FUI.

3-205
305-C

D
-042-001

FUI

FmLdLoadCatalog

FoLiRTSLoad

FoLdCatalogEntry

DMS

FoLiUplinkLoad

FoLiRTSLoadReport

FoLiLoadContents

FmMsValidateConstraints

FmMsGenerateLoad

{CMS proxy with FUI} {CMS proxy with
Command Model}

FoLiLoadImage

sends load gen
request

returns load contents file

sends load contents

returns success status

sends
filename

returns
success status

retrieves load contents file

sends load
contents

returns constraint
check results

sends load
gen request

returns constraint
check results

overrides soft
constraints

sends load
gen request

returns constraint
check results

overrides soft
constraints

creates
binary

creates from load image
for

each
4K

creates

stores load report, uplink load, load image, and load contents

returns success status

creates from load parameters

stores

returns success
status

returns success status

returns success status
returns success

statusreturns success
status

Figure 3.6-13. Microprocessor Load Generation Event Trace

3-206 305-CD-042-001

3.6.4.7 Flight Software Load Generation Scenario

3.6.4.7.1 Flight Software Load Generation Abstract

The Flight Software Load Generation scenario describes the generation of an uplink flight software
load from a flight software load contents file that was created outside of the FOS and imported via
an IST or EOC workstation.

3.6.4.7.2 Flight Software Load Generation Summary Information

Interfaces:

• User Interface

• Data Management

Stimulus:

• Receipt of Load Generation Request from FUI

Desired Response:

• Flight Software Load generated and stored with DMS

• Flight Software Load entered in Flight software Load Catalog

Pre-Conditions:

• Load Catalog software has been initiated

Post-Conditions:

• Generated load is available for uplink

3.6.4.7.3 Flight Software Load Generation Description

Figure 3.6-14 shows the Flight Software Load Generaton Event Trace. The Load Catalog receives
a Load Generation Request, including identifying information about the load contents file, from
FUI. Load Catalog creates a Flight Software Load object and passes it the identifying information
about the flight software load contents. Flight Software Load retrieves the load contents from
DMS. Flight Software Load generates the uplink flight software load from the load contents and
requests DMS to store the uplink load, load contents, load image, and the load report. Load Catalog
creates a Load Catalog Entry and requests DMS to add it to the load catalog database. Load Catalog
sends an Event Message to DMS indicating that the load generation is complete and passes a
success status to FUI.

3-207
305-C

D
-042-001

FOS
User Interface FmLdLoadCatalog FoLiFlightLoad FoLdCatalogEntry DMSFoLiUplinkLoad FoLiLoadReportFoLiLoadContents

FoLiLoadImage
FmMsGenerateLoad

{CMS proxy
with FUI}

request flight
software load

generation

creates

returns success
status

requests load contents file

returns load contents file

passes input
file

creates from load contents

creates from load image
for

each
4K

creates

stores load contents, load image, uplink load(s), and load report

creates from load parameters
stores

returns success status

returns success
status

returns success statusreturns success
status

sends load gen
request

returns success
status

Figure 3.6-14. Flight Software Load Generation Event Trace

3-208 305-CD-042-001

3.6.4.8 ATC Load Generation Scenario

3.6.4.8.1 ATC Load Generation Abstract

The ATC Load Generation scenario describes the generation of an ATC Load from a directive list.
An uplinkable form of the ATC Load will be generated, as well as a Load Report, a Load Image,
and a Load Contents file. The ATC Load will have with it a Load Catalog Entry with its pertinent
information.

3.6.4.8.2 ATC Load Generation Summary Information

Interfaces:

• Schedule Controller

• DMS

Stimulus:

• Receipt of a directive list from the Schedule Controller

Desired Response:

• ATC Uplink Load, Load Image,Load Contents, and Load Report generated and stored with
DMS

• ATC Load entered into ATC Load Catalog

Pre-Conditions:

• Load Catalog software has been initialized

Post-Conditions:

• Generated load is available for uplink

3.6.4.8.3 ATC Load Generation Description

Figure 3.6-15 shows the ATC Load Generation Event Trace. An FoLiATCLoad object is created
and passed a list of commands. ATC Load converts these commands to their binary form and
places them in a load contents file. ATC Load generates the load image from the load contents file.
ATC Load generates the uplink load from the load image by packetizing the load image and
converting the load image to the proper spacecraft format. ATC Load creates the load report. The
report, uplink load, load image, and load contents are stored with DMS. ATC Schedule sends the
ATC Load to Load Catalog via the proxy FmMsStoreATCLoad. Load Catalog creates a Load
Catalog Entry and requests DMS to add it to the load catalog database. Load Catalog passes a
success message back to ATC Schedule.

3-209
305-C

D
-042-001

FmLdLoadCatalog
FoLdCatalogEntry

FmScATCSchedule DMS

FoLiATCLoad
FoLiLoadContents FoLiUplinkLoad

FoLiATCLoadReport
FmMsStoreATCLoad

{proxy with ATC Schedule}FoLiLoadImage

sends load

creates
stores data

returns status

returns success status

sends
directives creates from

directives

creates from load contents

stores report, load contents, and uplink load(s)

return success status
return success

status

sends load
via ipc

returns status
via ipc

returns success status

creates from load image
for

each
4K

creates

Figure 3.6-15. ATC Load Generation Event Trace

3-210 305-CD-042-001

3.6.4.9 Uplink Notification Receipt Scenario

3.6.4.9.1 Uplink Notification Receipt Abstract

The Uplink Notification Receipt Scenario describes the updating of a Load Catalog Entry with the
uplinked time of the load. Load Catalog receives an event message with the load name and time
of uplink, and proceeds to update the appropriate Catalog Entry.

3.6.4.9.2 Uplink Notification Receipt Summary Information

Interfaces:

• DMS

Stimulus:

• Receipt of Load Uplink Status Event Message from DMS

Desired Response:

• Updated Load Catalog Entry stored with DMS

Pre-Conditions:

• Load Catalog software has been initiated

Post-Conditions:

• Update information sent to Spacecraft Model

3.6.4.9.3 Uplink Notification Receipt Description

Figure 3.6-16 shows the Uplink Notification Receipt Event Trace. Load Catalog receives a
FoEvEvent message specifying the name of the load that has been uplinked and the time of uplink.
Load Catalog creates a Catalog Entry object and requests DMS to retrieve the catalog entry for the
specified load name. Load catalog updates the uplink time in the catalog entry's Uplink Info object.
If this is the last uplink load (partition) for this load name, Load Catalog updates the uplink time
in the Catalog Entry object and requests DMS to update the Catalog Entry for the load. Load
Catalog creates a FmMsUpdateBuffer request and sends it to FmSmMapBuffer, the proxy to
Spacecraft Model.

3-211
305-C

D
-042-001

DMS FmLdLoadCatalog FoLdCatalogEntryFmMsInform
FoLdUplinkInfo FmSmMapBuffer

{CMS proxy with
Spacecraft Model}

FmSmSpacecraftModel

{CMS proxy
with DMS}

sends update request

updates time

sends uplink
notification event

message

updates time

returns info

sends update buffer request

sends update
buffer request

Figure 3.6-16. Uplink Notification Receipt Event Trace

3-212 305-CD-042-001

3.6.5 Load Catalog Data Dictionary

System Include Files

rw/collect.h
rw/dlistcol.h

Include Files

EcTypes.h

Preprocessor Macros

_FmLdLoadCatalog_h_

Types

class FmLdLoadCatalog
class definition

Base Classes

public RWCollectable

Public Functions

EcTInt CheckForUplink(EcTInt)

Checks to see if a load with the given DAS id has been uplinked to the spacecraft. Returns TRUE if the load has been
uplinked.

EcTVoid ConstraintCheck(const FoMsRTSLoadGenReq&)

Sends an RTS load contents file to the Command Model for constraint checking.

EcTInt CreateCatalogEntry(const FoLiATCLoad&)

After an ATC load has been generated, creates a load catalog entry from information in the load and stores both the entry
and the load in the database.

EcTInt CreateCatalogEntry(FoMsLoadGenReq*)

After any load (except for ATC) has been successfully generated, creates a load catalog entry from information in the load
gen request and stores the entry in the database.

EcTVoid HandleMessage()

Determines what type of message it has received, calls the appropriate process function, and sends the return value of that
function to the proxy.

EcTVoid MakeFSWload(const FoMsFSWLoadGenReq&)

Constructs a flight software load from the request.

EcTVoid MakeMicroload(const FoMsMPLoadGenReq&)

Constructs a microprocessor load from the request.

EcTVoid MakeRTSload(const FoMsRTSLoadGenReq&)

Constructs a RTS load from the request.

EcTVoid MakeTableload(const FoMsTableLoadGenReq&)

Constructs a table load from the request.

EcTInt ProcessDeletions(const RWSlistCollectables&)

Deletes all loads on the input list from the load catalog.

3-213 305-CD-042-001

EcTVoid ProcessLoadGenRequest(const FoMsLoadGenReq&)

Makes the appropriate load for the request, performs constraint checking as necessary, and returns a status.

EcTVoid ProcessLoadUplinkStatus(const FoEvEvent&)

Calls UpdateCatalogEntry() and passes in the event, and sends an update request to spacecraft model.

EcTInt ToFUI(const FoMsCMSStatus&)

Sends the input object to the proxy, which will send it to FUI.

EcTInt UpdateCatalogEntry(const RWCString&)

Fetches the appropriate catalog entry from the database, and increments the number of times scheduled.

FmMsUpdateBuffer& UpdateCatalogEntry(const FoEvEvent&)

Fetches the appropriate catalog entry from the database, and updates it with the information in the status.

Private Data

FoEvEvent* myEventPtr

A pointer to an event.

FoMsCMSStatus myProcessingStatus

The result of the processing of any load. This attribute will be changed after every load processing.

System Include Files

rw/collect.h

Preprocessor Macros

_FmMsCatalogUpdate_h_

Types

class FmMsCatalogUpdate

Base Classes

public RWCollectable

Public Functions

EcTVoid LoadScheduled(const HString&)

Called by PAS to notify Load Catalog that a certain load has been scheduled for uplink.

Private Functions

EcTInt CreateConnection(void)

Creates the two-way connection between this proxy and FmLdLoadCatalog.

EcTVoid DestroyConnection(void)

Destroys the connection between this proxy and FmLdLoadCatalog.

EcTInt Send(const RWCString&)

Sends an object to FmLdLoadCatalog via IPC.

3-214 305-CD-042-001

System Include Files

rw/collect.h

Preprocessor Macros

_FoMsGenInfo_h_

Types

class FoMsGenInfo
class definition

Base Classes

public RWCollectable

Private Data

RWCString myDirectory

Directory where the table data is located.

RWCString myFilename

File that contains the table data.

RWCString myTableName

Name of the table for which the load is to be generated.

System Include Files

rw/collect.h

Preprocessor Macros

_FmMsGenTable_h_

Types

class FmMsGenTable
class definition

Base Classes

public RWCollectable

Public Functions

EcTInt MakeTableLoad(const FoMsGenInfo&)

Called by ANA. Sends the value of FoMsGenInfo to FmLdLoadCatalog via IPC requesting the generation of a table load
and waits for a response of success or failure.

Private Functions

EcTInt CreateConnection()

Creates the two-way connection between this proxy and FmLdLoadCatalog.

EcTVoid DestroyConnection()

Destroys the connection between this proxy and FmLdLoadCatalog.

3-215 305-CD-042-001

FoMsCMSStatus& Receive()

Receives an EcTInt from FmLdLoadCatalog via IPC and returns it.

EcTVoid Send(const FoMsGenInfo&)

Sends an object to FmLdLoadCatalog via IPC.

System Include Files

rw/collect.h

Preprocessor Macros

_FmMsGenerateLoad_h_

Types

class FmMsGenerateLoad
class definition

Base Classes

public RWCollectable

Public Functions

FoMsCMSStatus& ConstraintOverride(option)

Sends the value of option to FmLdLoadCatalog via IPC and waits for a response.

EcTInt CreateConnection()

Creates the two-way connection between this proxy and FmLdLoadCatalog.

EcTVoid DestroyConnection()

Destroys the connection between this proxy and FmLdLoadCatalog.

FoMsCMSStatus& GenerateLoad(const FoMsLoadGenReq&)

Called by FUI to send the load gen request. Returns a response.

Public Types

enum option

Enumerators

n
y

Private Functions

FoMsCMSStatus& Receive()

Receives an FoMsCMSStatus object from FmLdLoadCatalog via IPC and returns it.

EcTVoid Send(const RWCollectable&)

Sends an object to FmLdLoadCatalog via IPC.

3-216 305-CD-042-001

Preprocessor Macros

_FmMsInform_h_

Types

class FmMsInform

Public Functions

EcTVoid InformCMS(const FoEvEvent&)

Called by DMS to send Load Catalog an event message. This operation is used to notify CMS that a load has been up-
linked or that a load contents file has been imported into DMS.

Private Functions

EcTInt CreateConnection(void)

Creates the two-way connection between this proxy and FmLdLoadCatalog.

EcTVoid DestroyConnection(void)

Destroys the connection between this proxy and FmLdLoadCatalog.

EcTVoid Send(const RWCollectable&)

Sends an object to FmLdLoadCatalog via IPC.

Preprocessor Macros

_FmMsStoreATCLoad_h_

Types

class FmMsStoreATCLoad
class definition - This class represents an interface between the ATC Schedule and the Load Catalog. It uses ipc to relay in-
formation between this class and the Load Catalog. ATC Schedule sends information to this class via function calls.

Public Functions

EcTInt CheckForLoad(EcTInt)

Called by ATC Schedule to send a DAS Id to the Load Catalog and get back an integer status, indicating that the load
associated with this DAS Id has or has not been uplinked.

EcTInt CreateConnection()

Creates the two-way connection between this proxy and FmLdLoadCatalog.

EcTInt DeleteLoads(const RWSlistCollectables&)

Called by ATC Schedule to delete all loads on the input list. Returns a response.

EcTVoid DestroyConnection()

Destroys the connection between this proxy and FmLdLoadCatalog.

EcTInt Receive()

Receives an FoMsCMSStatus object from FmLdLoadCatalog via IPC and returns it.

EcTVoid Send(const RWCollectable&)

Sends an object to FmLdLoadCatalog via IPC.

EcTInt StoreLoad(const FoLiATCLoad&)

Called by ATC Schedule to send a load for storage. Returns a response.

3-217 305-CD-042-001

Preprocessor Macros

_FmMsUpdateBuffer_h_

Types

class FmMsUpdateBuffer
This class represents a message from the CMS load catalog to update the ATC/RTS buffers. It is sent from the load catalog
when an uplink verification is received from the Command Subsystem It is also used to update the ground image.

Private Data

EcTInt myBufferID

Represent the buffer number that needs to be updated, pertains to RTS buffer number

EcTInt myEndLocation

Represent the End location in the buffer

RWCString myLoadName

Represents the load that was uplinked

EcTInt myStartLocation

Represents the start location in the buffer

RWCString myTableName

Represents the table name for the buffer update

EcTInt myType

represents the type of buffer affected by the uplink

Preprocessor Macros

_FmMsValidateConstraints_h_

Types

class FmMsValidateConstraints
This class represents the interface proxy class between CMS internal subsystems and the FmCcCommandModel class. FmC-
cCommandModel manages the command rule-based constraint checking.

Public Functions

EcTInt CreateConnection(void)

Establishes a connection with FmCcCommandModel to receive constraint checking request from the schedule controller
and the load catalog

EcTVoid DestroyConnection(void)

Destroys the connection with FmCcCommandModel

FoMsCMSStatus& Receive(void)

Receives the results of rule-base command constraint checking, FoMsCMSStatus

FoMsCMSStatus& Send(const RWCollectable&)

Sends either a FmScConstCk command list from the schedule controller or a FoEcDirective list created from an RTS load
contents file to the FmCcCommandModel for rule-base command constraint checking

FoMsCMSStatus& ValidateCommands(const FmScConstCk&)

FmScScheduleController invokes this function to send the DAS scheduled command list to be command rule-based con-
straint checked

3-218 305-CD-042-001

FoMsCMSStatus& ValidateRTS(const RWCString&, const RWCString&)

FmLdLoadCatalog invokes this function to send the directory name and load name from the generate RTS load request
to be command rule-based constraint checked. This function creates the FmMnDirectiveList to the FmCcCommandMod-
el.

Preprocessor Macros

_FmSmMapBuffer_h_

Types

class FmSmMapBuffer
This class represents the interface proxy class between CMS internal subsystems and the FmSmSpacecraft class. FmSmSpace-
craft manages the buffer modeling for ATC, RTS and table buffers and the ground

imaging.

Public Functions

EcTInt CreateConnection(EcTVoid)

Establishes a connection with FmSmSpacecraft to receive requests from the schedule controller and the load catalog

EcTVoid DeleteBuffers(const RWSlistCollectables&)

Request received from load catalog when a late change as been successfully processed. The predicted buffer models as-
sociated with all of the generated loads are deleted. Instantiates an FmMsDeleteATCBuffers object.

EcTVoid Destroy(EcTVoid)

Destroys the connection with FmCcCommandModel

FmMsATCBufferInfo GetATCBufStartTime(const FoEcTime&)

Requests the start time of the 1st command in the buffer that will be used to model the newly received DAS or late change
request

RWSlistCollectables& MapATC(const FmMnDirectiveList&, const FOSTimeInter-
val&, const FoEcTime&, const EcTInt&)

Request FmSmSpacecraft to map the command list into an ATC buffer model. Instantiates an FmMsATCMapRequest
object to be sent to FmSmSpacecraft.

RWSlistCollectables& MapLateChange(const FmMnDirectiveList&, const FOS-
TimeInterval&, const FoEcTime&, const EcTInt&)

Requests FmSmSpacecraft to map the late change command list into the correct buffer model. Instantiates an FmMsATC-
MapRequest object to be sent to FmSmSpacecraft.

RWSlistCollectables& Receive(EcTVoid)

Receives the response from FmSmSpacecraftModel It receives either A list of FmMsLoadData objects or a
FmMsATCBufferInfo object

EcTVoid Send(const RWCollectable&)

Sends messages to FmSmSpacecraftModel. Sends FmMsATCMapRequest, FmMsDeleteATCBuffers, or FmMsUpdate-
Buffer.

EcTVoid UpdateBuffer(const FmMsUpdateBuffer&)

Request the buffer be updated to a new status

3-219 305-CD-042-001

System Include Files

rw/collect.h

Preprocessor Macros

_FoFmDataField_h_

Types

class FoFmDataField
class definition

Base Classes

public RWCollectable

Public Functions

RWBitVec ProduceBinary()

Produces the binary form of this field.

Private Data

RWCString myDataUnits

The units of the field value.

RWCString myFieldDescriptor

Textual information describing the field and its value.

EcTInt myFieldNumber

A unique value which identifies the field within the table.

EcTInt myRangeCheckFlag

An indicator of whether range checking is to be performed.

EcTInt myScaleFactor

The scale factor to be applied to the word value within this field.

EcTInt myTableNumber

A unique value specifying a memory table.

EcTInt myValueBitSize

The size of the value in bits.

EcTInt myValueOverrideFlag

An indicator of whether the value may be overwritten with a new value during table generation.

RWCString myValueType

The data type of the value in this field.

3-220 305-CD-042-001

Include Files

FdDbAccessor.h

Preprocessor Macros

_FoFmTableFormat_h_

Types

class FoFmTableFormat
class definition

Base Classes

public FdDbAccessor

Public Functions

RWBitVec ProduceBinary()

Produces the binary form of each field in the table.

Private Data

RWCString myDescriptor

Textual information describing the table.

EcTInt myMaxSize

The maximum number of words allowed in the table.

EcTInt myStartAddress

The starting location in memory for the table.

RWCString myTableMnemonic

The name that is used to reference the table.

EcTInt myTableNumber

A unique value identifying the table.

RWCString myTableType

The type of memory table.

Include Files

FdDbAccessor.h

Preprocessor Macros

_FoLdCatalogEntry_h_

Types

class FoLdCatalogEntry
class definition

3-221 305-CD-042-001

Base Classes

public FdDbAccessor

Private Data

EcTInt myDASId

The DASId which the load covers. This is only valid for ATC loads.

EcTInt myEndLocation

The last location in memory used by the load.

RWCString myLoadName

The name of the load.

EcTInt myLoadSize

The number of bytes in the load.

RWCString myLoadType

The load type. ATC, RTS, TAB, MP, or FSW.

EcTInt myNumTimesSchd

The number of times that the load has been scheduled for uplink.

RWCString myOwner

The owner of the load.

EcTInt myRTSBuffer

The number of the buffer in which the RTS load is going to reside.

RWCString mySpacecraftLocation

The location of the load on the spacecraft.

EcTInt myStartLocation

The first location in memory used by the load.

RWCString myStorageLocation

The location of the load in storage on the ground.

RWSlistCollectables myUplinkLoads

A list of uplink loads associated with this load.

RWTime myUplinkTime

The time at which the load was actually uplinked to the spacecraft.

FOSTimeInterval myValidUplinkPeriod

The valid uplink period of the load.

Include Files

FoLiLoadReport.h

Preprocessor Macros

_FoLiATCLoadReport_h_

Types

class FoLiATCLoadReport
class definition

3-222 305-CD-042-001

Base Classes

public FoLiLoadReport

Private Data

FmMnDirectiveList myCommandList

The entire list of commands which constitute the load.

FmMnDirectiveList myControlCommands

The control commands contained in the load.

RWTime myStartTime

The time of the first command in the load.

RWTime myStopTime

the time of the last command in the load.

Include Files

FoLiLoad.h

Preprocessor Macros

_FoLiFlightLoad_h_

Types

class FoLiFlightLoad
stp/omt class definition 174512 - This class represents a flight software load. The class maintains load-related information.
The class contains behaviors necessary to produce the load's uplink form and load report.

Base Classes

public FoLiLoad

Public Functions

EcTInt BuildUplinkLoad()

Formats the load contents into an appropriate storage command and generates the load report.

Private Data

EcTInt myEndingLocation

The last memory location used by the load.

EcTInt myMemoryUpdateSize

The size of the load in bytes.

EcTInt myStartingLocation

The first location in memory used by the load.

3-223 305-CD-042-001

System Include Files

rw/collect.h

Preprocessor Macros

_FoLiLoad_h_

Types

class FoLiLoad

Base Classes

public RWCollectable

Public Functions

virtual EcTInt BuildUplinkLoad(const FoLiLoadImage&)

Builds the uplinkable load and the load report.

FoMsCMSStatus& CreateLoad(const FoMsLoadGenReq&)

Reads in the file from the request and creates the load.

EcTInt GenerateLoadImage(const FoLiLoadContents&)

Generates the binary for the load and stores it in a file.

Private Data

RWCString myDestination

The destination on the spacecraft for the load.

RWCString myDirectory

The directory where the load contents file from which the load is generated exists.

FoLiLoadContents myLoadContents

The load contents object.

RWCString myLoadName

The name of the load.

EcTInt myLoadSize

The size of the load in bytes.

EcTInt myNumberOfPieces

The number of uplink loads for this load.

RWCString myOwner

The id of the owner of the load.

EcTInt mySizeOfLastPiece

The number of bytes of the last uplinkable load.

EcTInt mySpacecraftId

The id of the spacecraft for which the load is valid.

FoMsCMSStatus myStatus

The processing status of the load.

RWSlistCollectables myUplinkLoads

The uplinkable portions of the load.

3-224 305-CD-042-001

FOSTimeInterval myUplinkPeriod

The uplink period of the load.

Include Files

FoDsFile.h

Preprocessor Macros

_FoLiLoadContents_h_

Types

class FoLiLoadContents
class definition - This class represents a file into which the load contents are placed. The load contents are sent directly to
CMS from an external interface, except in the case of ATC.

Base Classes

public FoDsFile

Include Files

FoDsFile

Preprocessor Macros

_FoLiLoadReport_h_

Types

class FoLiLoadReport
class definition

Base Classes

public FoDsFile

Private Data

EcTInt myEndLocation

The last memory location used by the load.

RWCString myLoadName

The name of the load for which this report was written.

EcTInt mySize

The size of the load in bytes.

EcTInt myStartLocation

The first memory location used by the load.

RWCString myType

the type of the load for which this report was written.

FOSTimeInterval myUplinkPeriod

The uplink window of the load for which this report was written.

3-225 305-CD-042-001

Include Files

FoLiLoad.h

Preprocessor Macros

_FoLiMicroLoad_h_

Types

class FoLiMicroLoad
stp/omt class definition 174512 - This class represents a microprocessor load. The class maintains load-related information.
The class contains behavior necessary to produce the load's uplink form and load report.

Base Classes

public FoLiLoad

Public Functions

EcTInt BuildUplinkLoad()

Formats the load contents into an appropriate storage command and generates the load report.

Private Data

EcTInt myEndingLocation

The last memory location used by the load.

EcTInt myMemoryUpdateSize

The size of the load in bytes.

EcTInt myStartingLocation

The first location in memory used by the load.

Include Files

FoLiLoad.h

Preprocessor Macros

_FoLiRTSLoad_h_

Types

class FoLiRTSLoad
class definition

Base Classes

public FoLiLoad

Public Functions

EcTInt BuildUplinkLoad(const FoMsLoadGenReq&)

Builds the uplinkable load and the load report.

FoMsCMSStatus& CreateLoad(const FoMsLoadGenReq&)

Creates the load from the load gen request and returns a status.

3-226 305-CD-042-001

EcTInt GenerateBinary(RWFile&)

Creates the binary for each command in the command list.

Private Data

RWDlistCollectables myCriticalCommands

A list of commands in the load which are flagged as critical.

RWDlistCollectables myDirectiveList

The entire list of directives which define the load.

EcTInt myRTSBuffDestination

The buffer number in which the load will reside on the spacecraft.

Include Files

FoLiLoad.h

Preprocessor Macros

_FoLiTableLoad_h_

Types

class FoLiTableLoad
class definition

Base Classes

public FoLiLoad

Public Functions

EcTInt BuildUplinkLoad()

Constructs the uplinkable form of the load.

EcTInt ComposeReport()

Populates the load report with the pertinent information about the load.

EcTInt CreateLoad(const FoMsTableLoadGenReq&)

Generates the uplinkable load based on the request.

EcTInt GenerateLoadImage(const FoLiLoadContents&)

Generates the load image from the contents.

FoFmTableFormat RetrieveTableFormat(const RWCString&)

Retrieves the appropriate format for this table from DMS.

Private Data

EcTInt myEndLocation

The ending location in memory for the table load.

FoLiLoadReport myLoadReport

The load report associated with this load.

EcTInt myStartLocation

The starting location in memory for the table load.

3-227 305-CD-042-001

RWCString myTableName

The name of the table for which this load is valid. Table name is used to find the format in DMS.

Include Files

FoDsFile.h

Preprocessor Macros

_FoLiUplinkLoad_h_

Types

class FoLiUplinkLoad
class definition

Base Classes

public FoDsFile

Public Functions

EcTInt BuildLoad(const FoLiLoadImage&)

Generates the CRC for the load, puts the load into packets, and stores the load with DMS.

EcTInt* BuildLoadData(EcTInt*)

Sets the command destination information and fills in the command data.

EcTInt* CCSDSWrap(EcTInt*)

Generates the packets for the load.

System Include Files

rw/collect.h

Preprocessor Macros

_FoMsCMSStatus_h_

Types

class FoMsCMSStatus
class definition

Base Classes

public RWCollectable

Private Data

EcTInt myId

The id of this message.

RWCString myStatus

Pertinent information about the status object. Mostly used to explain why a process failed.

3-228 305-CD-042-001

Include Files

FoMsLoadGenReq.h

Preprocessor Macros

_FoMsFSWLoadGenReq_h_

Types

class FoMsFSWLoadGenReq
stp/omt class definition 2795027

Base Classes

public FoMsLoadGenReq

System Include Files

rw/collect.h

Preprocessor Macros

_FoMsLoadGenReq_h_

Types

class FoMsLoadGenReq

Base Classes

public RWCollectable

Private Data

RWCString myDirectory

The directory in which the input file is stored.

RWCString myFunction

The purpose of the load.

RWCString myLoadName

The name which should be assigned to the load. Also the name of the input file.

EcTInt mySize

The size of the input file in bytes.

RWCString mySpacecraftId

The id of the spacecraft for which the load should be made.

RWCString mySubsystemId

The id of the subsystem for which the load should be made.

RWCString myUserId

The identifying information about the originator of the request.

FOSTimeInterval myValidUplinkPeriod

The period during which the load is valid.

3-229 305-CD-042-001

Include Files

FoMsLoadGenReq.h

Preprocessor Macros

_FoMsMPLoadGenReq_h_

Types

class FoMsMPLoadGenReq
stp/omt class definition 2795028

Base Classes

public FoMsLoadGenReq

Include Files

FoMsLoadGenReq.h

Preprocessor Macros

_FoMsRTSLoadGenReq_h_

Types

class FoMsRTSLoadGenReq
class definition

Base Classes

public FoMsLoadGenReq

Private Data

EcTInt myCheckOnlyFlag

Specifies if the RTS is to be constraint checked only.

EcTInt myOffset

The offset of the commands in the RTS.

EcTInt myRTSBufferNumber

The buffer number in which the RTS load will be stored.

Include Files

FoMsLoadGenReq.h

Preprocessor Macros

_FoMsTableLoadGenReq_h_

Types

class FoMsTableLoadGenReq
class definition

3-230 305-CD-042-001

Base Classes

public FoMsLoadGenReq

Private Data

EcTInt myEndLocation

The location in the table where the load should end. If it is not set, the table load will include all locations from myStart-
Field to the end of the table.

EcTInt myStartField

The location in the table where the load should begin. This makes it possible to have partial table loads. The default is set
to 0.

RWCString myTableName

The name of the table, used to locate the format.

Preprocessor Macros

_FpRmLoadActDel_h_

Types

class FpRmLoadActDel
Instances of a FpRmLoadActDel provide the proxy for sending load deletion messages.

Public Construction

FpRmLoadActDel(const FpRmLoadActDel&)

Copy constructor.

FpRmLoadActDel(void)

Constructor.

~FpRmLoadActDel(void)

Destructor.

Public Functions

int loadActDelRequest(const HString&, int)

Send the request saying that a load has been deleted.

void operator =(const FpRmLoadActDel&)

Assignment operator.

AB-1 305-CD-042-001

Abbreviations and Acronyms

ACL Access Control List

AD Acceptance Check/TC Data

AGS ASTER Ground System

AM Morning (ante meridian) -- see EOS AM

Ao Availability

APID Application Identifier

ARAM Automated Reliability/Availability/Maintainability

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
(formerly ITIR)

ATC Absolute Time Command

BAP Baseline Activity Profile

BC Bypass check/Control Commands

BD Bypass check/TC Data (Expedited Service)

BDU Bus Data Unit

bps bits per second

CAC Command Activity Controller

CCB Change Control Board

CCSDS Consultative Committee for Space Data Systems

CCTI Control Center Technology Interchange

CD-ROM Compact Disk-Read Only Memory

CDR Critical Design Review

CDRL Contract Data Requirements List

CERES Clouds and Earth's Radiant Energy System

CI Configuration item

CIL Critical Items List

CLCW Command Link Control Words

CLTU Command Link Transmission Unit

CMD Command subsystem

CMS Command Management Subsystem

CODA Customer Operations Data Accounting

COP Command Operations Procedure

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

AB-2 305-CD-042-001

CRC Cyclic Redundancy Code

CSCI Computer software configuration item

CSMS Communications and Systems Management Segment

CSS Communications Subsystem (CSMS)

CSTOL Customer System Test and Operations Language

CTIU Command and Telemetry Interface Unit (AM-1)

DAAC Distributed Active Archive Center

DAR Data Acquisition Request

DAS Detailed Activity Schedule

DAT Digital Audio Tape

DB Data Base

DBA Database Administrator

DBMS Database Management System

DCE Distributed Computing Environment

DCP Default Configuration Procedure

DEC Digital Equipment Corporation

DES Data Encryption Standard

DFCD Data Format Control Document

DID Data Item Description

DMS Data Management Subsystem

DOD Digital Optical Data

DoD Department of Defense

DS Data Server

DSN Deep Space Network

DSS Decision Support System

e-mail electronic mail

Ecom EOS Communication

ECS EOSDIS Core System

EDOS EOS Data and Operations System

EDU EDOS Data Unit

EGS EOS Ground System

EOC Earth Observation Center (Japan);
EOS Operations Center (ECS)

EOD Entering Orbital Day

EON Entering Orbital Night

EOS Earth Observing System

AB-3 305-CD-042-001

EOSDIS EOS Data and Information System

EPS Encapsulated Postscript

ESH EDOS Service Header

ESN EOSDIS Science Network

ETS EOS Test System

EU Engineering Unit

EUVE Extreme Ultra Violet Explorer

FAS FOS Analysis Subsystem

FAST Fast Auroral Snapshot Explorer

FDDI Fiber Distributed Data Interface

FDF Flight Dynamics Facility

FDIR Fault Detection and Isolation Recovery

FDM FOS Data Management Subsystem

FMEA Failure Modes and Effects Analyses

FOP Frame Operations Procedure

FORMATS FDF Orbital and Mission Aids Transformation System

FOS Flight Operations Segment

FOT Flight Operations Team

FOV Field-Of-View

FPS Fast Packet Switch

FRM FOS Resource Management Subsystem

FSE FOT S/C Evolutions

FTL FOS Telemetry Subsystem

FUI FOS User Interface

GB Gigabytes

GCM Global Circulation Model

GCMR Global Circulation Model Request

GIMTACS GOES I-M Telemetry and Command System

GMT Greenwich Mean Time

GN Ground Network

GOES Geostationary Operational Environmental Satellite

GSFC Goddard Space Flight Center

GUI Graphical User Interface

H&S Health and Safety

H/K Housekeeking

HST Hubble Space Telescope

AB-4 305-CD-042-001

I/F Interface

I/O Input/Output

ICC Instrument Control Center

ICD Interface Control Document

ID Identifier

IDB Instrument Database

IDR Incremental Design Review

IEEE Institute of Electrical and Electronics Engineers

IOT Instrument Operations Team

IP International Partners

IP-ICC International Partners-Instrument Control Center

IPs International Partners

IRD Interface requirements document

ISDN Integrated Systems Digital Network

ISOLAN Isolated Local Area Network

ISR Input Schedule Request

IST Instrument Support Terminal

IST Instrument Support Toolkit

IWG Investigator Working Group

JPL Jet Propulsion Laboratory

Kbps Kilobits per second

LAN Local Area Network

LaRC Langley Research Center

LASP Laboratory for Atmospheric Studies Project

LEO Low Earth Orbit

LOS Loss of Signal

LSM Local System Manager

LTIP Long-Term Instrument Plan

LTSP Long-Term Science Plan

MAC Medium Access Control;
Message Authentication Code

MB Megabytes

MBONE Multicast Backbone

Mbps Megabits per second

MDT Mean Down Time

MIB Management Information Base

AB-5 305-CD-042-001

MISR Multi-angle Imaging Spectro-Radiometer

MMM Minimum, Maximum, and Mean

MO&DSD Mission Operations and Data Systems Directorate (GSFC Code 500)

MODIS Moderate resolution Imaging Spectrometer

MOPITT Measurements Of Pollution In The Troposphere

MSS Management Subsystem

MTPE Mission to Planet Earth

NASA National Aeronautics and Space Administration

Nascom NASA Communications Network

NASDA National Space Development Agency (Japan)

NCAR National Center for Atmospheric Research

NCC Network Control Center

NEC North Equator Crossing

NFS Network File System

NOAA National Oceanic and Atmospheric Administration

NSI NASA Science Internet

NTT Nippon Telephone and Telegraph

OASIS Operations and Science Instrument Support

ODB Operational Database

ODM Operational Data Message

OMT Object Model Technique

OO Object Oriented

OOD Object Oriented Design

OpLAN Operational LAN

OSI Open System Interconnect

PACS Polar Acquisition and Command System

PAS Planning and Scheduling

PDB Project Data Base

PDF Publisher's Display Format

PDL Program Design Language

PDR Preliminary Design Review

PI Principal Investigator

PI/TL Principal Investigator/Team Leader

PID Parameter ID

PIN Password Identification Number

POLAR Polar Plasma Laboratory

AB-6 305-CD-042-001

POP Polar-Orbiting Platform

POSIX Portable Operating System for Computing Environments

PSAT Predicted Site Acquisition Table

PSTOL PORTS System Test and Operation Language

Q/L Quick Look

R/T Real-Time

RAID Redundant Array of Inexpensive Disks

RCM Real-Time Contact Management

RDBMS Relational Database Management System

RMA Reliability, Maintainability, Availability

RMON Remote Monitoring

RMS Resource Management Subsystem

RPC Remote Processing Computer

RTCS Relative Time Command Sequence

RTS Relative Time Sequence;
Real-Time Server

S/C Spacecraft

SAR Schedule Add Requests

SCC Spacecraft Controls Computer

SCF Science Computing Facility

SCL Spacecraft Command Language

SDF Software Development Facility

SDPS Science Data Processing Segment

SDVF Software Development and Validation Facility

SEAS Systems, Engineering, and Analysis Support

SEC South Equator Crossing

SLAN Support LAN

SMA S-band Multiple Access

SMC Service Management Center

SN Space Network

SNMP System Network Mgt Protocol

SQL Structured Query Language

SSA S-band Single Access

SSIM Spacecraft Simulator

SSR Solid State Recorder

STOL System Test and Operations Language

AB-7 305-CD-042-001

T&C Telemetry and Command

TAE Transportable Applications Environment

TBD To Be Determined

TBR To Be Replaced/Resolved/Reviewed

TCP Transmission Control Protocol

TD Target Day

TDM Time Division Multiplex

TDRS Tracking and Data Relay Satellite

TDRSS Tracking and Data Relay Satellite System

TIROS Television Infrared Operational Satellite

TL Team Leader

TLM Telemetry subsystem

TMON Telemetry Monitor

TOO Target Of Opportunity

TOPEX Topography Ocean Experiment

TPOCC Transportable Payload Operations Control Center

TRMM Tropical Rainfall Measuring Mission

TRUST TDRSS Resource User Support Terminal

TSS TDRSS Service Session

TSTOL TRMM System Test and Operations Language

TW Target Week

U.S. United States

UAV User Antenna View

UI User Interface

UPS User Planning System

US User Station

UTC Universal Time Code;
Universal Time Coordinated

VAX Virtual Extended Address

VMS Virtual Memory System

W/S Workstation

WAN Wide Area Network

WOTS Wallops Orbital Tracking Station

XTE X-Ray Timing Explorer

AB-8 305-CD-042-001

This page intentionally left blank.

GL-1 305-CD-042-001

Glossary

GLOSSARY of TERMS for the Flight Operations Segment

activity A specified amount of scheduled work that has a defined
start date, takes a specific amount of time to complete, and
comprises definable tasks.

analysis Technical or mathematical evaluation based on calculation,
interpolation, or other analytical methods. Analysis
involves the processing of accumulated data obtained from
other verification methods.

attitude data Data that represent spacecraft orientation and onboard
pointing information. Attitude data includes:
o Attitude sensor data used to determine the pointing of the
spacecraft axes, calibration and alignment data, Euler
angles or quaternions, rates and biases, and associated
parameters.
o Attitude generated onboard in quaternion or Euler angle
form.
o Refined and routine production data related to the
accuracy or knowledge of the attitude.

availability A measure of the degree to which an item is in an operable
and committable state at the start of a "mission" (a
requirement to perform its function) when the "mission" is
called for an unknown (random) time. (Mathematically,
operational availability is defined as the mean time between
failures divided by the sum of the mean time between
failures and the mean down time [before restoration of
function].

GL-2 305-CD-042-001

availability
(inherent) (Ai)

The probability that, when under stated conditions in an
ideal support environment without consideration for
preventive action, a system will operate satisfactorily at any
time. The “ideal support environment” referred to, exists
when the stipulated tools, parts, skilled work force manuals,
support equipment and other support items required are
available. Inherent availability excludes whatever ready
time, preventive maintenance downtime, supply downtime
and administrative downtime may require. Ai can be
expressed by the following formula:

Ai = MTBF/ (MTBF + MTTR)

Where: MTBF = Mean Time Between Failures
MTTR = Mean Time To Repair

availability
(operational) (Ao)

The probability that a system or equipment, when used
under stated conditions in an actual operational
environment, will operate satisfactorily when called upon.
Ao can be expressed by the following formula:

Ao = MTBM / (MTBM + MDT + ST)

Where: MTBM = Mean Time Between Maintenance
(either corrective or preventive)
MDT = Mean Maintenance Down Time where
corrective, preventive administrative and
logistics actions are all considered.
ST = Standby Time (or switch over time)

A schedule of activities for a target week corresponding to
normal instrument operations constructed by integrating
long term plans (i.e., LTSP, LTIP, and long term spacecraft
operations plan).

build An assemblage of threads to produce a gradual buildup of
system capabilities.

calibration The collection of data required to perform calibration of the
instrument science data, instrument engineering data, and
the spacecraft engineering data. It includes pre-flight
calibration measurements, in-flight calibrator
measurements, calibration equation coefficients derived
from calibration software routines, and ground truth data
that are to be used in the data calibration processing routine.

GL-3 305-CD-042-001

command Instruction for action to be carried out by a space-based
instrument or spacecraft.

command and data
handling (C&DH)

The spacecraft command and data handling subsystem
which conveys commands to the spacecraft and research
instruments, collects and formats spacecraft and instrument
data, generates time and frequency references for
subsystems and instruments, and collects and distributes
ancillary data.

command group A logical set of one or more commands which are not stored
onboard the spacecraft and instruments for delayed
execution, but are executed immediately upon reaching
their destination on board. For the U.S. spacecraft, from the
perspective of the EOS Operations Center (EOC), a
preplanned command group is preprocessed by, and stored
at, the EOC in preparation for later uplink. A real-time
command group is unplanned in the sense that it is not
preprocessed and stored by the EOC.

detailed activity
schedules

The schedule for a spacecraft and instruments which covers
up to a10 day period and is generated/updated daily based
on the instrument activity listing for each of the instruments
on the respective spacecraft. For a spacecraft and
instrument schedule the spacecraft subsystem activity
specifications needed for routine spacecraft maintenance
and/or for supporting instruments activities are
incorporated in the detailed activity schedule.

direct broadcast Continuous down-link transmission of selected real-time
data over a broad area (non-specific users).

GL-4 305-CD-042-001

EOS Data and
Operations System

(EDOS) production
data set

Data sets generated by EDOS using raw instrument or
spacecraft packets with space-to-ground transmission
artifacts removed, in time order, with duplicate data
removed, and with quality/ accounting (Q/A) metadata
appended. Time span or number of packets encompassed
in a single data set are specified by the recipient of the data.
These data sets are equivalent to Level 0 data formatted
with Q/A metadata.

For EOS, the data sets are composed of: instrument science
packets, instrument engineering packets, spacecraft
housekeeping packets, or onboard ancillary packets with
quality and accounting information from each individual
packet and the data set itself and with essential formatting
information for unambiguous identification and subsequent
processing.

housekeeping data The subset of engineering data required for mission and
science operations. These include health and safety,
ephemeris, and other required environmental parameters.

instrument o A hardware system that collects scientific or operational
data.
o Hardware-integrated collection of one or more sensors
contributing data of one type to an investigation.
o An integrated collection of hardware containing one or
more sensors and associated controls designed to produce
data on/in an observational environment.

instrument activity
deviation list

An instrument's activity deviations from an
existinginstrument activity list, used by the EOC for
developing the detailed activity schedule.

instrument activity
list

An instrument's list of activities that nominally covers
seven days, used by the EOC for developing the detailed
activity schedule.

instrument
engineering data

Subset of telemetered engineering data required for
performing instrument operations and science processing

instrument
microprocessor
memory loads

Storage of data into the contents of the memory of an
instrument’s microprocessor, if applicable. These loads
could include microprocessor-stored tables,
microprocessor-stored commands, or updates to
microprocessor software.

GL-5 305-CD-042-001

instrument resource
deviation list

An instrument's anticipated resource deviations from
anexisting resource profile, used by the EOC for
establishing TDRSS contact times and building the
preliminary resource schedule.

instrument resource
profile

Anticipated resource needs for an instrument over a
targetweek, used by the EOC for establishing TDRSS
contact times and building the preliminary resource
schedule.

instrument science
data

Data produced by the science sensor(s) of an instrument,
usually constituting the mission of that instrument.

long-term
instrument plan
(LTIP)

The plan generated by the instrument representative to the
spacecraft's IWG with instrument-specific information to
complement the LTSP. It is generated or updated
approximately every six months and covers a period of up
to approximately 5 years.

long-term science
plan (LTSP)

The plan generated by the spacecraft's IWG containing
guidelines, policy, and priorities for its spacecraft and
instruments. The LTSP is generated or updated
approximately every six months and covers a period of up
to approximately five years.

long term spacecraft
operations plan

Outlines anticipated spacecraft subsystem operations and
maintenance, along with forecasted orbit maneuvers from
the Flight Dynamics Facility, spanning a period of several
months.

mean time between
failure (MTBF)

The reliability result of the reciprocal of a failure rate that
predicts the average number of hours that an item, assembly
or piece part will operate within specific design parameters.
(MTBF=1/(l) failure rate; (l) failure rate = # of failures/
operating time.

mean down time
(MDT)

Sum of the mean time to repair MTTR plus the average
logistic delay times.

mean time between
maintenance
(MTBM)

The mean time between preventive maintenance (MTBPM)
and mean time between corrective maintenance (MTBCM)
of the ECS equipment. Each will contribute to the
calculation of the MTBM and follow the relationship:
1/MTBM = 1/MTBPM + 1/MTBCM

mean time to repair
(MTTR)

The mean time required to perform corrective maintenance
to restore a system/equipment to operate within design
parameters.

GL-6 305-CD-042-001

object Identifiable encapsulated entities providing one or more
services that clients can request. Objects are created and
destroyed as a result of object requests. Objects are
identified by client via unique reference.

orbit data Data that represent spacecraft locations. Orbit (or
ephemeris) data include: Geodetic latitude, longitude and
height above an adopted reference ellipsoid (or distance
from the center of mass of the Earth); a corresponding
statement about the accuracy of the position and the
corresponding time of the position (including the time
system); some accuracy requirements may be hundreds of
meters while other may be a few centimeters.

playback data Data that have been stored on-board the spacecraft for
delayed transmission to the ground.

preliminary resource
schedule

An initial integrated spacecraft schedule, derived from
instrument and subsystem resource needs, that includes the
network control center TDRSS contact times and nominally
spans seven days.

preplanned stored
command

A command issued to an instrument or subsystem to be
executed at some later time. These commands will be
collected and forwarded during an available uplink prior to
execution.

principal
investigator (PI)

An individual who is contracted to conduct a specific
scientific investigation. (An instrument PI is the person
designated by the EOS Program as ultimately responsible
for the delivery and performance of standard products
derived from an EOS instrument investigation.)

prototype Prototypes are focused developments of some aspect of the
system which may advance evolutionary change.
Prototypes may be developed without anticipation of the
resulting software being directly included in a formal
release. Prototypes are developed on a faster time scale
than the incremental and formal development track.

GL-7 305-CD-042-001

raw data Data in their original packets, as received from the
spacecraft and instruments, unprocessed by EDOS.
o Level 0 – Raw instrument data at original resolution,
time ordered, with duplicate packets removed.
o Level 1A – Level 0 data, which may have been
reformatted or transformed reversibly, located to a
coordinate system, and packaged with needed ancillary and
engineering data.
o Level 1B – Radiometrically corrected and calibrated data
in physical units at full instrument resolution as acquired.
o Level 2 – Retrieved environmental variables (e.g., ocean
wave height, soil moisture, ice concentration) at the same
location and similar resolution as the Level 1 source data.
o Level 3 – Data or retrieved environmental variables that
have have been spatially and/or temporally resampled (i.e.,
derived from Level 1 or Level 2 data products). Such
resampling may include averaging and compositing.
o Level 4 – Model output and/or variables derived from
lower level data which are not directly measured by the
instruments. For example, new variables based upon a time
series of Level 2 or Level 3 data.

real-time data Data that are acquired and transmitted immediately to the
ground (as opposed to playback data). Delay is limited to
the actual time required to transmit the data.

reconfiguration A change in operational hardware, software, data bases or
procedures brought about by a change in a system’s
objectives.

SCC-stored
commands and
 tables

Commands and tables which are stored in the memory of
the central onboard computer on the spacecraft. The
execution of these commands or the result of loading these
operational tables occurs sometime following their storage.
The term “core-stored” applies only to the location where
the items are stored on the spacecraft and instruments; core-
stored commands or tables could be associated with the
spacecraft or any of the instruments.

scenario A description of the operation of the system in user’s
terminology including a description of the output response
for a given set of input stimuli. Scenarios are used to define
operations concepts.

GL-8 305-CD-042-001

segment One of the three functional subdivisions of the ECS:
CSMS -- Communications and Systems Management
Segment
FOS -- Flight Operations Segment
SDPS -- Science Data Processing Segment

sensor A device which transmits an output signal in response to a
physical input stimulus (such as radiance, sound, etc.).
Science and engineering sensors are distinguished
according to the stimuli to which they respond.
 o Sensor name: The name of the satellite sensor which
was used to obtain that data.

spacecraft
engineering data

The subset of engineering data from spacecraft sensor
measurements and on-board computations.

spacecraft
subsystems activity
list

A spacecraft subsystem's list of activities that nominally
covers seven days, used by the EOC for developing the
detailed activity schedule.

spacecraft
subsystems resource
profile

Anticipated resource needs for a spacecraft subsystem over
a target week, used by the EOC for establishing TDRSS
contact times and building the preliminary resource
schedule.

target of opportunity
(TOO)

A TOO is a science event or phenomenon that cannot be
fully predicted in advance, thus requiring timely system
response or high-priority processing.

thread A set of components (software, hardware, and data) and
operational procedures that implement a function or set of
functions.

thread,

as used in
some Systems
Engineering
documents

A set of components (software, hardware, and data) and
operational procedures that implement a scenario, portion
of a scenario, or multiple scenarios.

toolkits Some user toolkits developed by the ECS contractor will be
packaged and delivered on a schedule independent of ECS
releases to facilitate science data processing software
development and other development activities occurring in
parallel with the ECS.

	1.��Introduction
	1.1 Identification
	1.2 Scope
	1.3 Purpose
	1.4 Status and Schedule
	1.5 Document Organization

	2.��Related Documentation
	2.1 Parent Document
	2.2 Applicable Documents
	2.3 Information Documents
	2.3.1 Information Document Referenced

	3.��Command Management
	3.1 Command Management Context
	3.2 CMS Schedule Controller
	3.2.1 CMS Schedule Controller Context
	3.2.2 CMS Schedule Controller Interfaces
	3.2.3 CMS Schedule Controller Obect Model
	3.2.4 CMS Schedule Controller Dynamic Model
	3.2.5 CMS Schedule Controller Data Dictionary

	3.3 Ground Schedule
	3.3.1 Ground Schedule Context
	3.3.2 Ground Schedule Interfaces
	3.3.3 Ground Schedule Obect Model
	3.3.4 Ground Schedule Dynamic Model
	3.3.5 Ground Schedule Data Dictionary

	3.4 Command Model
	3.4.1 Command Model Context
	3.4.2 Command Model Interfaces
	3.4.3 Command Model Obect Model
	3.4.4 Command Model Dynamic Model
	3.4.5 Command Model Data Dictionary

	3.5 Spacecraft Model
	3.5.1 Spacecraft Model Context
	3.5.2 Spacecraft Model Interfaces
	3.5.3 Spacecraft Model Obect Model
	3.5.4 Spacecraft Model Dynamic Model
	3.5.5 Spacecraft Model Data Dictionary

	3.6 Load Catalog
	3.6.1 Load Catalog Context
	3.6.2 Load Catalog Interfaces
	3.6.3 Load Catalog Obect Model
	3.6.4 Load Catalog Dynamic Model
	3.6.5 Load Catalog Data Dictionary

	List of Figures
	Figure 3.1-1. CMS Context Diagram
	Figure 3.2-1. Schedule Controller Context Diagram
	Figure 3.2-2. Schedule Controller Obect Model - P...
	Figure 3.2-3. Schedule Controller Object Model - P...
	Figure 3.2-4. Schedule Controller Object Model - P...
	Figure 3.2-5. Schedule Controller Object Model - P...
	Figure 3.2-6. Schedule Controller Object Model - P...
	Figure 3.2-7. Schedule Controller Object Model - P...
	Figure 3.2-8. Schedule Controller Object Model - P...
	Figure 3.2-9. Schedule Controller Object Model - P...
	Figure 3.2-10. Schedule Controller Initialization ...
	Figure 3.2-11. Schedule Controller DAS Receipt Eve...
	Figure 3.2-12. DAS Receipt Scenario - Soft Constra...
	Figure 3.2-13. DAS Receipt Scenario - Hard Constra...
	Figure 3.2-14. Late Change Receipt Event Trace
	Figure 3.2-15. "What-if" Receipt Scenario - Hard C...
	Figure 3.3-1. Ground Schedule Context Diagram
	Figure 3.3-2. Ground Schedule Object Model - page ...
	Figure 3.3-3. Ground Schedule Object Model - page ...
	Figure 3.3-4. Ground Schedule Object Model - File...
	Figure 3.3-5. Ground Schedule Initialization Event...
	Figure 3.3-6. Expanded DAS Processing Event Trace
	Figure 3.3-7. Delete from Schedule Event Trace
	Figure 3.3-8. Expected State Table Generation Even...
	Figure 3.3-9. Ground Script Generation Event Trace...
	Figure 3.4-1. Command Model Context Diagram
	Figure 3.4-2. Command Model Object Model (1 of 7)
	Figure 3.4-3. Command Model Object Model (2 of 7)
	Figure 3.4-4. Command Model Object Model (3 of 7)
	Figure 3.4-5. Command Model Object Model (4 of 7)
	Figure 3.4-6. Command Model Object Model (5 of 7)
	Figure 3.4-7. Command Model Obect Model (6 of 7)
	Figure 3.4-8. Command Model Obect Model (7 of 7)
	Figure 3.4-9. Command Model Initialization Event T...
	Figure 3.4-10 . Command Model Expanded Directive L...
	Figure 3.4-11. Command Model Command Procedure Rec...
	Figure 3.4-12. Command Model Activity Definition L...
	Figure 3.4-13. Command Model RTS Load Definition R...
	Figure 3.5-1. Spacecraft Model ontext Diagram
	Figure 3.5-2. Spacecraft Model Object Model (1 of ...
	Figure 3.5-3. Spacecraft Model Object Model (2 of ...
	Figure 3.5-4. Spacecraft Model Object Model (3 of ...
	Figure 3.5-5. Spacecraft Model Object Model (4 of ...
	Figure 3.5-6. Spacecraft Model Object Model (5 of ...
	Figure 3.5-7. Spacecraft Model Obect Model (6 of ...
	Figure 3.5-8 . Spacecraft Model Initialization Eve...
	Figure 3.5-9. Spacecraft Model ATC Load Generation...
	Figure 3.5.10. Spacecraft Model ATC Buffer Model U...
	Figure 3.5-11. Spacecraft Model ATC Buffer Model D...
	Figure 3.5-12. Spacecraft Model ATC Buffer Display...
	Figure 3.5-13. Spacecraft Model RTS Buffer Display...
	Figure 3.5-14. Spacecraft Model Map Report Event T...
	Figure 3.5-15. Spacecraft Model Image Report Event...
	Figure 3.5-16. Spacecraft Model Compare Report Eve...
	Figure 3.5-17. Spacecraft Model Table Model & Imag...
	Figure 3.5-18. Spacecraft Model RTS Model & Image ...
	Figure 3.5-19. Spacecraft Model Table Data Request...
	Figure 3.5-20. Spacecraft Model Ground Image Overw...
	Figure 3.6-1. Load Catalog Context Diagram
	Figure 3.6-2. Load Catalog External Interfaces
	Figure 3.6-3. Load Generation Requests
	Figure 3.6-4. Load Types
	Figure 3.6-5. Load Components
	Figure 3.6-6. Load Component File Classes
	Figure 3.6-7. Load Catalog Internal Interfaces
	Figure 3.6-8. Load Catalog Initialization Event Tr...
	Figure 3.6-9. Table Load Generation Event Trace
	Figure 3.6-10. Table Load Generation from FDF Load...
	Figure 3.6-11. Table Load Generation for Clock Cor...
	Figure 3.6-12. RTS Load Generation Event Trace
	Figure 3.6-13. Microprocessor Load Generation Even...
	Figure 3.6-14. Flight Software Load Generation Eve...
	Figure 3.6-15. ATC Load Generation Event Trace
	Figure 3.6-16. Uplink Notification Receipt Event T...

